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RADIATION TRANSPORT

October 1, 1982 - March 31, 1983

by
R. D. O'Dell

ABSTRACT

Research and development progress in radiation trans-
port by the Los Alamos National Laboratory's Group X-6 for
the first half of FY 83 is reported. Included are tasks in
the areas of Fission Reactor Neutronics, Deterministic
Transport Methods, and Monte Carlo Radiation Transport.

I. INTRODUCTION

Research, development, and design analysis performed by Group X—-6, Radia-
tion Transport, of the Applied Theoretical Physics Division during the first
half of FY 83 are described in this progress report. Included is the unclas-
sified portion of programs in the Group funded by the U.S. Department of Energy
(DOE). Our classified work is reported elsewhere, Some of the reported work
was performed in direct support of other Laboratory Groups.

This report is organized into four sections: (i) Fission Reactor
Neutronics, (ii) Deterministic Transport Methods, (iii) Monte Carlo Radiation
Transport, and (iv) Cross Sections and Physics. Technical program management
for these areas is provided by William L. Thompson, Group Leader for Group X-6,
and by Associate Group Leaders R. Arthur Forster, R. Douglas 0'Dell, and
Patrick D. Soram.*

*Authors of individual task reports are listed in parentheses after each task
title. Authors not in Group X-6 have their affiliation also noted. Readers
are encouraged to contact these cognizant technical personnel directly for
additional information or further published results.



Effective October 1, 1982, Group T-1, Transport and Reactor Theory, was
joined with Group X-6, Radiation Transport. The progress reports previously
provided by Group T-l will no longer be published under the title of Transport
and Reactor Theory, but will hereafter be included in the Group X-6 progress
report entitled "Radiation Transport.”™ Because of the transition in merging
Groups T-1 and X-6 during FY 83, only two progress reports will be issued for
FY 83 - each covering a six-month period. Commencing with FY 84, progress

reports will be issued quarterly,

IT. FISSION REACTOR NEUTRONICS

The Fission Reactor Neutronics effort in Group X-6 is involved in the
development and testing of new reactor—oriented deterministic transport codes
and methods; in existing code maintenance, improvement, and support; and in
selected applications of our codes to civilian nuclear analysis problems.

We report our progress on the existing codes ONEDANT and TWODANT.
Included are reports on the general release of ONEDANT to users world wide, on
improvements to the ONEDANT/TWODANT input module, and on improvements to both
the ONEDANT and TWODANT codes themselves. A report is provided on validation
testing of the TWODANT code and on .its subsequent release to Argonne National
Laboratory (ANL) for trial usage. We also report on the iwplementation of the
ANL diffusion code DIF3D at Los Alamos. Under our new code development effort,
we report on progress in the development of the new triangular mesh code
TWOHEX.

A. ONEDANT Code Release (F. W. Brinkley, Jr. and D. R. Marr)

The ONEDANTl code package for use on CDC-7600 computers was sent to the
National Energy Software Center at Argonne and to the Radiation Shielding
Information Center (RSIC) at Oak Ridge. A CDC-7600 version was also sent to
Jim Morel at Sandia National Laboratories (Albuquerque) and a special version
was sent to J. Stepanek at the Swiss Federal Institute for Reactor Research,

An IBM version of ONEDANT was sent to Cy Adams at Argonne National
Laboratory (ANL). The code is now operational at ANL in both free-standing
form and as part of the ARC system. A small number of changes in the code were
required in implementing the code package in the IBM computing enviroanment at
ANL.



B. ONEDANT/TWODANT Input Module Improvements (F. W. Brinkley, D. R. Marrc,
and R. D. 0'Dell)

A cross—section check has been added to the generalized input module used
by ONEDANT and TWODANT ., 2 Now, the run will be aborted if the input total cross
section of an isotope is found to be zero. A void cross section (i.e. all
cross sections zero) will, however, be accepted. This check applies only to
those cases where the cross sections are from cards or card images; it does not
apply to ISOTXS or GRUPXS.S

Two changes were made to the cross—-sectfon processing section of the input
module to accommodate the processing of ISOTXS files as commonly specified at
ANL. The first change generates the total cross section by summing the partial
cross sections found on an ISOTXS. 1t is used only when the total cross
section is not included on the ISOTXS file, a procedure normally used at ANL.
The second change ensures that cross sections are balanced before they are
passed to the solver module. If the input cross sections are not balanced, the
code now modifies them within group scattering cross sections seen by the
solver module so that balance is preserved. A warning message is provided for
the user when this procedure is used.

The following additional changes have been made to the generalized Input
Module:

e According to the standards set by the Committee on Computer Code
Coordination,3 the ISOTXS and GRUPXS files do not contain the 2L+l
factor in the higher order scattering cross sections. Prior to this
time, the generalized input module always added the 2L+l term to the
cross sections that it provided to the solver module when the cross
sections were from either ISOTXS or GRUPXS. It has now been found that
there do exist ISOTXS files in which the 2L+l term has erroneously been
included. In order to properly process these nonstandard files, a new
option has been added to the I2LPl input variable. Setting it to minus
one will force an override of the standard treatment allowing the
scattering cross sections from nonstandard files to be properly passed

on to the Solver Module.

e A bug was found in the GRUPXS cross-section processing. If the file
had any isotope with a CHI matrix, the run would abort. Now the CHI

matrix is properly skipped and processing continues.



e Additional CHI input is now allowed. Prior to this time, only the zone
wide CHI specified in the Solver input (Block V) could be used. Now
the file wide chi present on an ISOTXS or GRUPXS file will be used
unless it is overridden by the zone wide CHI. Further, if the cross
sections are from either ODNINP or XSLIB, a file wide vector CHI may be
input in Block III using the CHIVEC= array. Again, this file wide chi
can be overridden by the zone wide chi supplied in Block V.

« The geometry module can now write a standard GEODST file for the
triangular geometries denoted by IGEOM=9 and NTRIAG either zero or
one. These are both parallelogram domains with, respectively, a 120°
or a 60° angle at the origin. This option is intended for use with the
ANL code DIF3D and with the forthcoming Los Alamos code TWOHEX.

¢ In the mixing input, isotopes from the library are usually specified
with a hollerith name. The name in the mixing input must correspond
exactly, character by character, to the name on the library in order to
be accepted. Some llbraries contain leading blanks in the names; this
forces the user to include those blanks in the mixing free field input
by using quotes. This nuisance has been eliminated; now, the code
strips leading blanks as it reads the names from the library and the

quotes are no longer needed.,

C. ONEDANT/TWODANT Improvements (D. R. Marr)
The cross-section print in both ONEDANT and TWODANT has been modified to

indicate whether the 2L+l Legendre expansion factor is included in the printed
higher-order scattering cross sections. The printed cross sections are now
also compatible with the original library form, that is, if the 2L+] term was
included on the original library, it is now included in the print and con-

versely.

D. TWODANT Code Improvements (D. R. Marr and F. W. Brinkley)

TWODANT has been modified to use the transport cross section from the
ISOTXS file, when available., The transport cross section is used only to form
the diffusion coefficient for the first diffusion calculation. The subsequent
converged transport solution is independent of this transport cross section,
but the change allows the first diffusion calculation to be compared with the

results from diffusion theory codes.



Another inhomogeneous source option has been added to TWODANT. Users may
now input an energy vector (spectrum) together with a single full spatial
matrix with the resulting energy-space dependent source being the product of
the energy spectrum and the spatial matrix.

The inhomogeneous source calculated capability in TWODANT was tested and
validated by comparing several test problem runs with TWODANT-II results.

The input of the ZONES array in two—-dimensional problems was changed to
make the ZONES array a stringed array, i.e., ZONES (IM;JM). This makes the
code consistent in the form of all two-dimensional input arrays.

An additional negative flux fixup test was added to the code at Dr.
Alcouffe's suggestion. The test eliminated some convergence problems we had
experienced with certain problems.

In the diffusion calculation portion of TWODANT we had previously used bit
manipulations. We were quite concerned that such bit manipulations might cause
exportability problems. With Dr. Alcouffe's assistance we were able to remove
these manipulations with a resulting reduction in computational time.

It was observed that the generation of the source—to-group was relatively
time consuming. An IF test was removed with a resultant 5% decrease in running
time. In addition, it was noted that the source~to-group calculation involved
a large number of SCM-LCM transfers. Recall that on the CDC-7600, a so-called
two-level computer, there is a small fast core memory (SCM) and a rapid access
large core memory (LCM). On IBM and CRAY computers there is no LCM but only a
large fast core. Such computers are called single-level machines. To make
such single-level machines appear like the two-level CDC-7600, a portion of
fast core is used to simulate LCM. LCM-SCM data transfers are thus simulated
by actually performing fast core to fast core transfers. Although such
core—core transfers are actually unnecessary, this procedure simplifies the
exporting of two-level computer codes to single-level computing environments.
On the CRAY single-level machine, core—core transfers are extremely rapid and
they essentially cost nothing. On IBM computers, however, core-core transfers
can be quite costly. Since such transfers are, in fact, unnecessary on
single-level computers we did some selective recoding so that on single-level
computers, instead of effecting core-core transfers, we simply change the core
pointers. Some 30-50% of our core-core transfers on single—level computers
have been eliminated by using this pointer change procedure in portions of the

source~to—-group calculatiouns.



The periodic dump procedure has been changed so that the user may input
the time between dumps. The dumps are only of the scalar fluxes. We also
modified the code so that the code shifts the dumps downward so that a maximum
of the three most current dumps is in the local file space.

A new iteration monitor has been installed. It provides a print very
gimilar to that from ONEDANT.

For adjoint problems, all printed output now shows the direct group number
8o that the user no longer needs to invert the group numbers printed in the
output as was previously required.

In a major effort, TWODANT 1is undergoing a thorough internal overhaul.
The goals are threefold:

. Eliminate the debris left from the development process.
. Make the code more amenable to future improvements.
. Improve the characteristics of the code that allows it to be used as

a test bed for new 2-D discrete-ordinates methods.

Expanding on this last goal, the ONEDANT code system was originally
conceived as a very modular one, one in which the flux calculation was isolated
from the Input and Edit sections. The flux calculation was done in a section
called the solver module. The goal was to be able to replace the Solver module
with new Solver modules, using new or different methods, while minimizing
changes to the Input and Edit portions of the code. This process was used
successfully in the development of TWODANT. The 1-D Solver module of ONEDANT
was replaced with a Solver module formed from the TWO~DA code. Now, we would
like to extend this philosophy deeper into the 2~D Solver module so that
installation of new spatial differencing methods would require minimal changes
to areas outside of the innermost flux calculational areés. Very little of

this internal overhaul should be apparent to the user.

E. Validation Testing of the Preliminary Production Version of TWODANT
(D. R. McCoy¥*)

As part of the TWODANT code validation effort, two problems were received

from Argonne National Laboratory (ANL) for analysis. TWODANT is our new
two-dimensional, time-independent, discrete—-ordinates code using diffusion

synthetic acceleration. The two problems were (i) an (x,y) geometry ZPPR

*Present address: Group X-5, Los Alamos National Laboratory.



Assembly 11 test problem and (ii) an (r,z) geometry heterogeneous core problem
with a great deal of external structure which has been used at ANL to determine
shielding requirements and detector responses. The problems were analyzed on
the Los Alamos CRAY-I computers. Each of these problems and the results of our
analysis are described below.

The ZPPR-11 model problem is a nine energy-group, (x,y) geometry model
using a 60x120 spatial mesh. The geometry map of the problem is shown in
Fig. 1. Several analyses were performed on this model problem and a summary of
results is shown in Table I. The various runs shown in the table are
(1) TWODANT S,P, using vectorized line successive overrelaxation (LSOR) for
the synthetic diffusion inner iterations and Chebyshev acceleration for the
diffusion outer iterations with a very tight convergence criterion of ¢ = 10’7,
(ii) the same as (i) but with a convergence criterion of 10'5, (iii) TWODANT
Sy-P, with a convergence of 10~° but using our multigrid (MG) method for
solving the diffusion inner iterations (instead of LSOR) and with Chebyshev
acceleration for the diffusion outer iterations, (iv) TWODANT diffusion
calculation only using LSOR on the diffusion inner iterations, & = 10'5,
(v) TWODANT diffusion calculation only using MG on the diffusion inner
iterations, £ = 10'5, and (vi) DIF3D" using vectorized LSOR on its inner

iteration and Chebyshev acceleration on its outer iteratiomns, € = 10-°.
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Fig. 1. ZPPR-1l model problen.
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TABLE I

SUMMARY OF ZPPR-11 MODEL PROBLEM RESULTS

MAX.
POINTWISE NUMBER OF OUTER ITERATIONS CRAY-I
FISSION CPU TIME
METHOD Kopg ERROR TRANSPORT DIFFUSION (Sec)
TWODANT?
(LSOR) 0.981359 3,1x10~7 10 161 434
e=10"
TWODANT? .
(LSOR) 0.981359 3.1x10™ 6 39 130
e=10"
TWODANT? ;
(MG) 0.981358 6.1x10~ 6 42 112
e=10"°
b
TWODANT
DIFFUSION ONLY 0.970452 9.3x10~% - 31 53
(LSOR)
b
TWODANT
DIFFUSION ONLY 0.970452 1.1x10~° - 39 31
(MG)
pIF3D® .
DIFFUSION 0.976024 8.2x10" - 22 46
25,~P,
bc-IO‘5

cc-lO's, vectorized LSOR

Several observations can be made regarding the results shown in Table I.
First, the eigenvalues from TWODANT (diffusion only) and DIF3D differ because
the diffusion equation used in TWODANT solves a five—point vertex—differenced
diffusion equation while DIF3D uses a five—point cell-centered difference
equation. As the mesh spacing is refined, the difference in results from the
two methods is reduced. A second observation is that running TWODANT with a
very tight convergence, e.g., 10"7, accomplishes little other than consuming
much more computer time. The eigenvalues from the 10~° and 10~/ are both

identical to six significant figures, but the 10~7 run took nearly four times



longer than the 10~° run. It is our general observation that because of the
convergence controls extant in the preliminary version of TWODANT, any conaver-
gence criterion smaller than 10~3 constitutes overkill with very little practi-
cal improvement in accuracy but with substantial increases in computer run
times. Next, we observe that the multigrid diffusion method gives the same
results as the LSOR diffusion method. Although not indicated by the results of
the ZPPR-11 analysis, the multigrid method can be markedly superior to the LSOR
method in many problems, e.g., problems containing void cells, Finally, we
note that on the Los Alamos CRAY-I computers, a full S,-P, transport calcula-
tion can be effected on the ZPPR~11 problem in about three times the time
required for a diffusion calculation., Historically, older two-dimensional
transport calculations normally required perhaps 20 to 50 times as much com-
puter time as diffusion calculations.

The successful analysis of the ZPPR Assembly 11 model problem with TWODANT
fulfilled one of our DOE physics milestones for FY 1983.

The second ANL test problem is a heterogeneous core model in (r,z) geome-
try. The core is surrounded by a very large amount of sodium, steel, and
structure, so that it is essentially a very deep penetration, shielding-type
problem. The geometry map is shown in Fig. 2. The problem used 12 energy
groups and a 104x195 spatial mesh. Even though the total number of mesh cells
is over 20 000, the problem is still severely undermeshed. A summary of
results 1s shown in Table II. The various runs whose results are shown are
(1) TWODANT S,-P, using vectorized LSOR and Chebyshev acceleration on the
diffusion inner- and outer-iterations, respectively, with a convergence
criterion ¢ = 10'“, (ii) same as (i) but with multigrid acceleration on the
diffusion inner iterations, (iii) TWODANT diffusion only with LSOR on the
diffusion inner iterations, e = 10’5, (iv) same as (iii) but with MG on the
diffusion inner iterations, and (iv) DIF3D diffusion with nonvectorized LSOR on
the inner iterations, ¢ = 10-5.

For this core-shielding problem, it is seen that the TWODANT diffusion
only calculations ran significantly faster than the DIF3D diffusion calculation
presumably due to the lack of vectorization in DIF3D for this problem anal-
ysis., The TWODANT MG diffusion only run was significantly faster than the
TWODANT LSOR diffusion only calculation indicating the superior performance of

the multigrid method over successive overrelaxation for accelerating the
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Fig. 2. Heterogeneous core-shielding model problem.

diffusion inner iterations. Just as in the ZPPR-1l analysis, the TWODANT
diffusion ko¢¢ value differs from the DIF3D diffusion keff value because of
the different differencing schemes in the two codes. That this problem is
severely undermeshed was evidenced by the fact that the diffusion analyses
yielded negative scalar fluxes in several locations and also by the large dif-
ference in kgoef (1.8%) between the vertex-differenced and cell-centered-
differenced diffusion results. Nevertheless, it was this meshing that was
specified and that we used. The two transport calculations, S;-P5, using

LSOR and MG on the diffusion acceleration inner iterations yielded kgqff
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TABLE II

SUMMARY OF HETEROGENEOUS CORE — SHIELDING PROBLEM RESULTS

NUMBER OF OUTER ITERATIONS CRAY-1
CPU TIME

METHOD Koeg TRANSPORT DIFFUSION (Sec)
TWODANT®
(LSOR) 1.04965 5 34 740
TWODANT?
(MG) 1.04966 5 41 552
TWODANT®
DIFFUSION ONLY 0.99635 - 25 150
(LSOR)
TWODANT®
DIFFUSION ONLY 0.99635 - 21 48
(MG)
DIF3D®
(DIFFUSION) 1.01466 - 21 602

#5,~Py, € = 10~"

bs = 10~3

CNonvectorized LSOR, € = 1070

values some 4-57 different than diffusion theory. The running time penalty for
the MG transport calculation compared with the MG diffusion calculation was
roughly a factor of 12 - much higher than the factor of 3 to 4 observed with
the ZPPR-11 calculation. This large difference is probably explained by numer-
ical difficulties associated with the coarse meshing used for the heterogeneous
core-shielding problem and the manner in which iteration convergence is defined
in TWODANT. Using the LSOR version of TWODANT the S,-P, transport calcula-
tional time was 5 times that required for a diffusion only calculation. The
absolute run times for the LSOR TWODANT, however, were considerably longer than
the corresponding times for the MG version of TWODANT. Actually, the fact that
the transport calculations held together and were successfully conmpleted is
remarkable due to the coarse meshing of the problem. This fact attests to the

stability of the diffusion synthetic acceleration method as applied in TWODANT.
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In conclusion, then, we have conducted validation tests on two problems
provided by ANL using preliminary production versions of TWODANT. The tests
showed that the diffusion acceleration employed in TWODANT is an effective
method and the transport calculations can be performed with TWODANT with much
more acceptable time penalties relative to diffusion calculations. Further,
the validation tests have confirmed our feelings that the use of the multigrid
nethod on the diffusion acceleration inner-iterations is more stable and as

fast or faster than the use of line successive overrelaxation.

F. Export of TWODANT to Argonne Natiomal Laboratory (F. W. Brinkley, Jr.)

At the request of Argonne National Laboratory (ANL), it was agreed to pro-
vide them with a preliminary production version of our two-dimensional, time-
independent, diffusion synthetic accelerated, discrete-ordinates code TWODANT.
Tt was also agreed that TWODANT would be validated prior to shipping by using
the code to calculate two test problems to be provided by ANL. These problems
were subsequently received and the test calculations performed successfully
with TWODANT. The results of this validation testing are reported in Sec. IL.E
of this progress report.

As a result of our validation testing, it was decided to drop further
development of our regular TWODANT which used a line successive overrelaxation
(LSOR) technique on the diffusion inner iteration and, instead, to focus our
attention on our version of TWODANT which used the multigrid (MG) method on the
diffusion inner iterations. This multigrid version of TWODANT was thus
selected for exporting to ANL.

Since the code is used on the CRAY-1 and CDC-7600 computers at Los Alamos,
the preparation of TWODANT for use in ANL's IBM Computing environment required
that the code be processed to create an IBM-compatible version. Our prior
experience with exporting ONEDANT to ANL proved very valuable in converting our
CRAY/CDC-7600 version to an IBM version.

Since both ONEDANT and TWODANT use the same Input and Edit Modules and
differ only in their Solver Modules, C. H. Adams of ANL requested that both
Solver Modules be combined into a single overall ONEDANT/TWODANT code package
for ANL. This was done and the package transmitted to Argonne where it was
readily compiled with only a few minor changes.

Upon execution of the code package at ANL, however, a subtle but serious

problem was uncovered which took several days to uncover and correct. The

12



problem was traced to the fact that the IBM compiler passes arguments by value
if the argument is not thought to be an array. The problem can be illustrated

by exanmple.

CALL MULTIG (A(LIX))

END
SUBROUTINE MULTIG (IX)
[DIMENSION IX(1)]

CALL MULT (IX)

END
SUBROUTINE MULT (IX)
DIMENSION IX(1)

END

In our typical Los Alamos coding, the statement DIMENSION IX(1l) enclosed in [ ]
in subroutine MULTIG is not required and thus was not present. Without this
statement in an IBM environment, however, the following occurs. When
subroutine MULTIG is called, the address of A(LIX) is passed to the subroutine
as IX. When subroutine MULT is called from MULTIG, IX has not been defined as
an array so the IBM Compiler passes the value of IX to MULT instead of the
address of IX. Subroutine MULT then tries to use the value of IX as an address
which is totally incorrect. All that needed to be done to correct this is add
the DIMENSION IX(1l) statement indicated in brackets to MULTIG. Several
routines in our TWODANT Solver Module had to be corrected in this manner.

Once this problem was corrected, the ONEDANT/TWODANT package executed
properly at ANL. [The package 1s now being used as a production test at

Argonne.
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G. DIF3D Implementation at Los Alamos (F. W. Brinkley, Jr., and D. R. McCoy¥*)

During this reporting period an improved CRAY version of the Argonne
National Laboratory diffusion code DIF3D* was received and made operational on
our Los Alamos CRAY-1 computers. The implementation also included the intro-
duction of graphics with DIF3D under DISSPLA. Only a few minor problems were

encountered in making the code operational, and these were readily corrected.

H. TWOHEX Development (W. F. Walters)
Three test problems have been analyzed using both the DITRI scheme as

implemented in the code THREETRAN (hex,z)5 and the triangular linear character-
istic (TLC) scheme as implemented in the code TWOHEX which is still under
development. The first two problems are simple one-group problems used to test
the accuracy and rate of convergence of the TLC method. The third problem is a
four—group problem described in Ref. 6. This problem is used to examine the
effect of Chebyshev acceleration on outer iterations.

The first problem is a simple one-energy group problem. The domain is the

hexagon shown in Fig. 3. The cross sections are also indicated in this figure.

Za VZf ET Is

0.1 0.03 0.15 0.14

Fig. 3. Test problem 1.

*Present address: Group X-5, Los Alamos National Laboratory.
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The graph in Fig. 4 indicates the manner in which the eigenvalue converges
as the size of the triangles in the mesh is reduced. The height of a triangle
in the mesh starts at 6 cm and is reduced as indicated. From the graph it is
quite clear that the TLC scheme is far superior to the DITRI scheme in terms of
accuracy. Table III indicates that the TLC results are converged while the
DITRI eigenvalue has not yet converged. Of course, this is a severe high leak-
age test problem and is simply used to test the methods. The problem is not
meant to be characteristic of a reactor core.

Notice that these schemes do not converge to the same result for this
problem. This is due to the fact that the THREETRAN (hex,z) code and the
TWOHEX code use different quadrature sets. The THREETRAN (hex,z) code uses the
90° rotationally invariant set used by TWOTRAN-II code.” The TWOHEX code uses
a 60° rotationally invariant Tschebyschev-Legendre set first described by
Carlson® and used in the DIAMANT2 code.’ The DITRI result is obtained using

the S6 quadrature with 24 directions total. The TLC result is obtained by

D\o o T
L604 ol \ D DITRI

602 _| \

. [+
k]
-l
3 .600 ]
[
=
[

2598 wnd ¢}

.596 I

0.0 2.0 4.0 6!0

Hefght of the Triangle

Fig. 4. Eigenvalue as a function of mesh size.
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TABLE III

EIGENVALUE COMPARISON

Megsh Size Eigenvalue Eigenvalue

(Height of Triangle) DITRI TLC
cm S6 S4 Rectangular

12.00 0.53983 0.62363

6.00 0.58919 0.60111

4.50 0.59796 0.59950

3.00 0.60115 0.59912

2.40 0.60265 0.59900

1.50 0.60424 0.59891

0.75 0.60501 0.59890

using a rectangular S4 set (2 points on each z-direction cosine level). This
S4 set also has 24 directions. Additional results indicate that these two sets
are converging to the same result as the number of discrete directions is
increased,

The second test problem has been used before to test numerical schemes.
The geometric configuration for this problem is shown in Fig. 5. Region I is a
highly scattering region with a source density of unity and surrounds the
almost "black” central region II. The mesh for the second problem is 20
triangles long by 10 triangles high. In region II the side of a triangle is 5
mean free paths. The plot shown in Fig. 6 indicates that the TLC method is
much more positive than the DITRI method. No fixup of any kind is used in
either of the schemes. The negative fluxes appearing in the TLC plot are so
small that they are not apparent in the graph. This plot is along triangle
band number 5. This problem was analyzed using the same quadrature set as in
the first problem.

The third test problem is problem 1 of Ref. 6. The geometry and material
composition ig shown in Fig. 7. This problem was run with six triangles per

hexagon. The S4 quadrature set with 24 directions was used. It was found that
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Fig. 5. Test problem 2.
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Fig. 6. Cell average scalar flux as a function of position.
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identification)

Fig. 7. Two—dimensional problem 3.

the number of outer integrations was reduced from 11 to 9 when three term
Chebyshev acceleration method similar to that described in Ref. 4 was used to
accelerate the fission source. The theoretical limit for the reduction of
outer iterations using this method is reduction by a factor of two. 1In this
problem relatively few outer iterations are required even without accelera-
tion. This happens because the dominance ratio is about 0.7 for this "high
leakage" system.

For some of the systems analyzed in Ref. 4 the dominance ratio is closer
to unity and the number of outers is reduced by a factor of almost 2, For a
full sized LMFBR the dominance ratio will be closer to unity, and it is
expected that Chebyshev acceleration of the outer iterations will result in a
nuch larger percentage reduction in the number of outer iterations.

This type of acceleration was used due to the ease with which it could be
inserted into the code. No changes were required in the inner “sweeping"”
routines at all. In the next quarter Chebyshev acceleration will be added for
the inner iterations. Again, this acceleration will require no changes in the
sweeping routines. It is expected that this additional acceleration will
significantly reduce the number of inner iterations.

Additional work this quarter will include testing Pl scattering on the
TWOHEX code and adding the one-third core boundary conditions. At present
TWOHEX accepts only whole core problems.
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III. DETERMINISTIC TRANSPORT METHODS

Our work in Group X~6 on deterministic transport methods involves the
development, implementation, and assessment of both analytical and numerical
methods and models to aid the advancement of deterministic transport code
developnrent.

This reporting period we report on our progress in developing a diffusion
synthetic acceleration scheme for the diamond differenced discrete ordinates
equation in spherical geometry. This is followed by a report on a linear dis-
continuous scheme for the general two-dimensional geometry transport equation.
Next we report on rapidly converging iterative methods for numerical transport
problems. As part of our thermal radiation transport methods development
effort, we present reports on modified one-group acceleration of the frequency-
dependent diffusion equation, a modal acceleration method for frequency-depen-
dent diffusion equations, the behavior of DSA methods for time dependent trans-
port problems, and new diffusion-synthetic acceleration strategies for
frequency-dependent transport equations., Next is a report on calculational
results from a test code that solves the thermal radiation transport equation
using discrete-ordinates methods. We conclude this section with a report on a
sharper version of the Cauchy-Schwarz inequality for real-valued functions.

A. Diffusion Synthetic Acceleration for the Diamond Differenced Discrete
Ordinates Equation in Spherical Geometry (R. E. Alcouffe and E. W. Larsen)

The development of the unconditionally stable diffusion-synthetic acceler-
ation (DSA) method for the diamond-differenced discrete ordinates equations
has been described fully in one—dimensional slab geomet:ry,lo»ll and also in
x,y—geomet:ry.10 However, the method has never been discussed for curvilinear
geometries, where extra considerations involving treatment of the angular
redistribution terms occur. Therefore, we shall now describe the DSA method
for the one-group, spherical geometry discrete ordinates equation.

We consider a sphere 0<r<R, divided spatially into I concentric shells,

ri_1/2<r<ri+l/2, with rl/2 =0 and r = R, We also consider any standard,

I+1/2
even—-order Gauss-Legendre quadrature set on the interval -1{pu<l; the quadrature

points are py, and the corresponding weights w, are normalized so that
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N .
_1yd
z W =-L§?¥;$Tll—l , i =0,1,2. (1)

m=]

In addition, we define the angular cell edges um+1/2 by

m

Hor1/2 = -l § : “n ? OLm<N, (2)
n=1

Then for 1<m<N, the m~th angular cell is pm_1/2<u<um+1/2, and b lies
within this cell (but normally not at the center). From Eq. (2) we have

Yo T Por1/2 T Ppel/2 0 (3a)

By =1 (3b)
and

ners2 = FL (3¢)

Finally, we define

2
Apr/ = iy o (4a)
by 3 3
Vi =3 (g T Tieye) o (4b)
m
%1/2,1 =" Berigg T Aperye) :E: by » OSmSN, (5)
=1

and constants Ty according to two separate definitions:

0 (diamond difference)
T = . (6)

-1 - 12
Mo 2(“m+1/2 + “m—l/z) (Morel-Montry~<)

w
m
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Later we shall discuss the differences between these two definitions. We note

that the constants am+1/2,i satisfy
al/Z,i =0 , (7a)
172,000 (7b)

and are symmetric functions of angle:

Pae1/2 = T Bnt1/2 7 %mt1/2,1 T %n4l/2,1 (7¢)

The one-group, spherical geometry discrete ordinates equations can now be

written as

1+1/2

+1/2
ba(Ari1/2 Ya,i41/2 = A )

i-1/2 Ym,1-1/2

1 /2 24172 41/2
ta (ae1/2,1 Ymt1/2,10 = %a-1/2,1 Ya-1/2,1) * oW1 bng

L
= (oSV)i ¥y (vs); (8a)
241/2 1 , 2+1/2 2+1/2
Yt ) (¢m,i+1/2 + ¢m,i—1/2) ’ (8b)
1 +.“C 1—1
2+1/2 m  A+1/2 m  f+1/2
bt T 7T Ymr/2,0 T T Yme1/2,1 (8c)

In the analysis here we shall not be concerned with boundary conditions at r=0

or R, or with a starting direction calculation; our primary interest is just in
the discretized transport equation described by Eqs. (8). In these equationms,

2 or 2+1/2 denotes an iteration superscript. We assume that ¢éi is known,

we solve Eqs. (8) for ¢i:1/2, and we wish to construct equations for deter-

mining ¢g;1/2.

With the definition
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N
+1/2 1 Z +1/2
¢Oi ) ¢mi Yo ? (9)

m=1
the standard source—iteration method uses the following prescription:

41 4+1/2
%1 = Y1 .

(10)
The DSA method does not use Eq. (10); instead, more complicated (but ulti-
mately, more efficient) equations are developed which have the property that
the exact solution is computed in one iteration if the angular flux is a linear
function of p. To derive these equations, we operate on Eq. (8a) by the

operators

N
DG AN N (11)

m=]

ugse the definitions

N
+1/2 12 +1/2
¢ﬁ / = pn(pm) ¢i / LA n=0,1,2, (12)
m=]1

and obtain the two equations

2+1/2 2+1/2 2+1/2 2
Aprr/2 ®1,141/2 = Bi-172 01,4172 T (OpVy g = (oW by
VS, (13)
2 2+1/2 +1/2
3172 92,141/2 = Ai-1/2 %2, 1-1/2)
N
1 A+1/2 2+1/2 1
+3 (Appy2 90,141/2 = Ai-1y2 $0,1-172) * '2'2 My
m=1
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+1/2 +1/2
* (@pr1/2,1 Cur1/2,1 ~ %m-1/2,1 Yoe1/2,1) ¥ T (opV 0y

Now, using Eq. (7), we have

N
1 *1/2 2+1/2
2 Z b (Cor1/2.1 Ymbi/2,1 ~ %a-1/2,1 Ya-1/2,1) ¥m
m=1
N-1
__1 _ W1/2
=73 Z (b1 ™ Po) %me1/2,1 Yw1/2,1 ¥n
n=1
N-1
11 ) e+1/2
= 2 (bpry ™ M) %pe1/2,1 ¥m| %01
m=1
N-1
1 _ w1/2 _ aH1/2
t3 iy ™ o) “m1/2,1 | %01 bot1/2,1 )"0 °
m=1

Also, using Eqs. (1) and (5), we have

|
o r—
2
1
—

Qg ™ Bp) %pr1/2,1 ¥

=]
]
[=

N-1 m
_ A2 T A1y Z ( )
2 p'm+1 p’m Pa¥n

m=l n=1

N-1 N-1

_ A2 T A1y o =)
2 Hot1 Pn? Pn¥n

n=1 m=n

N-1
_ A1y Ai—l/ZZ( R £2 V7 Ml b Vi
by 7 U/ Hp¥h 3 '
n=1

a1/2 _

0

(14)

(15)

(16)
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Combining Eqs. (14, (15), and (16), we get

1 w1/2 W1/2 y 1 ) +1/2
T (Ars1/2 %0,141/2 ~ 21172 %0,1-1/2) = 3834172 = Ai-172) %01
H1/2 2 MH1/2 +1/2
+ (op¥)y 07y 3 (Air172 99 14172 = Ai-1/2 92,1-1/2)
N-1
-1 ( -p)a
2 Pl T Mo’ %ml/2,1
m=1

+1/2 2+1/2 )

* (051 " " Ym/2,s ¥ an

m
In addition, operating on Eq. (8b) by the operators in Eq. (l1), we obtain

A+1/2 _% ( A+1/2 +1/2 ) . (18)

% o, 1+1/2 T 93, 1-1/2

Eqs. (13), (17), and (18) are exactly solved by the solution ¢1+1/2 of
Eq. (8). We define acceleration equations from Eqs. (13), (17), and (18) by

241 _ 2+l g+ _
Ar172 O1,141/2 ~ Ai-172 01,1-172 T (Vg %oy = (VS)y (19a)
1 2+l 241 1 2+
3 (Aia1/2 90.141/2 = Ai-172 %0.1-1/2) =3 (Agrr/a = Aio1/2) 01
M2 a+1/2 2+1/2
+ (opV) 674 3 (Ait1/2 99,141/2 ~ Ai-1/2 %2,1-1/2)
N-1
_1 _ 241/2 _  a+1/2
22 ey = o) %peyy2,1 (904 Ynt1/2,1) Y (19b)

m=]

2+l L2+1 )

A1
% T2 (65, 54172 ¥ b§,1-172) » 1 =015 (19¢)

where
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OR = cT - os . (20)

These equations have the following properties:

(i) They agree with Eqs. (13), (17), and (18) upon convergence.
(ii) 1If the cell edge fluxes are linear in angle in the following senses:

H+1/2 _ a+1/2 +1/2

q)m,:l.+1/2 - ¢O,i+1/2 + 3um ¢1,1+1/2 ’ (2ta)
24172 2+1/2 ++1/2
$n+1/2,1 ~ P01 +3uy70 99 > (21b)

then the "2+1/2" terms [on the right side of Eq. (19b)] vanish and Eq. (19)

becomes four equations which exactly determine

¢£+1 ¢x+1 ¢1+1 ¢1+1
0,i+1/2° *1,i+1/2° *0i *1i °

To rewrite the acceleration equations in a more computationally useful

form, we define

PLa 2 I ¢x+1 - ¢JL+1/2 (22)

and subtract Eqs. (13), (17), and (18) from (19a,b,c) to obtain

+1 2+l 2+1
Avr1/2f1, 14172 ~ A-1280 1172 T (/P g foy

= (“sV)i(¢§;l/2 - 4g;) (23a)
%'(A1+1/zféti+1/2 B Ai-l/Zféti-l/Z) %'(A1+1/2 - Ai—l/z)fézl

* (o), £17 =0, (23b)
fﬁzl =.§ (f§ti+l/2 + f?fi-l/z) » J =0,1. (23¢)
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Now we reduce these equations to a single (edge-differenced diffusion)
2+1

0,1+1/2°
(23a) and (23b) to eliminate f

equation for £ To do this, we first introduce Eqs. (23c) into
2+1
ni
equations over two adjacent cells in a straightforward manner; this results in

, and then we manipulate the resulting two

1 Mo (1 Yoy2 el )
3 (o, L 0,143/2 ~ Fo,141/2) T3 Towy; Fo,i4/2 T Fo,1-1/2
L1 RV (L gy 1 (og¥)y
2 A030 T ALy 0,i+3/2 0,i+1/2 2 A 0 A )
(D ey (0441 S22
0,041/2 ¥ Fo,1-172) T K U F A 0,141 T %0,441
(o V)
s 1 2+1/2 L
K (9 Y1) (24

i+1/2 T A1/

which is the desired result.

2+1/2

The DSA method now consists of Eqs. (8) [which determine ¢ 1,

Eq. (9) [which determines ¢§+1/2], Eq. (24) [which determines f§+1], and
Eq. (22), {f.e.,
24+1 A+1/2 2+1
¢oi ¢oi + foi ’ (25)

which determines ¢l+1. This iterative method is repeated until convergence.

Tt has been tested over a wide range of problems and it converges very well,
leading to an error reduction of about two orders of magnitude for every three
iterations, independent of the type of problem and of the mesh size. However,
a conceptual difficulty exists, which experimentally appears to have little
effect on the stability or convergence rate, but which we now wish to discuss.
The derivation of the DSA equations is based on the concept that if the
cell edge fluxes are linear in the sense of Eq. (21), then the exact solution
is computed in one iteration. We now wish to discuss the following point: 1is

it possible for the cell edge fluxes to be linear in the sense of Eq. (21)?
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The answer is "yes", provided Eqs. (8b,c) and (2la,b) are mutually consisteat,

and "no" otherwise. From Eq. (8b) we get

@+1/2 _ 1, 3+1/2 2+1/2
=5 ( )

¢Ji ¢j,i+1/2 + ¢j,1—1/2 » 3 =0,1. (26)

Hence, introducing Eq. (2la) into (8b), we find

w+1/2 _ 1 [ a+1/2 2+1/2 1 [ at1/2 2+1/2
bt T2 [¢o,1+1/2 + 3um¢1,1+1/2] t3 [¢o,1—1/2 + 3“m¢1,1—1/%]
_ L At1/2 A+1/2
=gt Ml - 27)

Next, we introduce Eq. (21b) into (8¢c) and use Eq. (6) to obtain

¢

wi/2 _ Pt ehiy2 W+1/2
mi 2

%1 T 3pn/2%11

1-7 -
m| f+1/2 8+1/2
+ 3 [¢01 *t3e 172 014 ]

W1/2

1
- .32 (bmerya * am172) O] ar12
01

015 . (28)

(Morel-Montry)

Comparing Eqs. (27) and (28), we see that there is an inconsistency if the
diamond difference (DD) definition Ty = O is used, but there is no
inconsistency if the Morel-Montry definition is used. [Note that with this

latter definition, we have

1 + rm 1 - Tm
Mp =77 Mgy T T Hpey/2 0 (29)

consistent with Eq. (8c)]. Morel and Montry proposed the weighted-diamond—-in-
angle approach [Eqs. (6), (8c)] to guarantee that the discrete ordinates
equations have the correct diffusion limit, and thus to eliminate the
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otherwise-present flux dip at r = 0. With their definition of 7, the
discrete-ordinates solution can become consistently linear in angle (thus
ensuring the correct diffusion limit) and the DSA method can, in principal,
converge in one iteration; otherwise, it cannot. For practical problems, the
use of the DD definition of 1, does not appear to damage the overall stabil-
ity, but it 1s possible that in extreme cases this could occur, and then the
Morel-Montry definition would become a necessity.

B. A Linear Discontinuous Scheme for the Two-Dimensional General Geometry
Transport Equation (R. E. Alcouffe)

The linear discontinuous (LD) method for two-dimensional geometries has
been developed by many authors elsewhere. In this report we outline a specific
method which has been coded with an eye to efficiency and to investigate the
interaction with iteration acceleration by the diffusion synthetic method.

To begin, we write the R,Z transport equation for cell (i,j) which has

incorporated into it the diamond assumption in the angular direction as:

ord o

Ju

b+ (B, = W) & (r,2) + nr 5= + ro ¢ (r,2) = rS_(r,2)

+ Bm¢m_l/2(r,2) , (30)

m=1, s.., m,
for

Tim1/2 ST S T4y

Zi-172 225 %540/0 ¢

The linear discontinuous method assumes the fcllowing expansion for the angular
flux within the cell 1i,j,

- 1 J
SalEa?) = by T ey Y Yamy (31)
r - Ei z - Zj
iy 0 = Gayoes TR Ymmrryang Y T Yameryagg 500 39
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where h, k are the mesh spacing in the i and j directions, respectively,

3 3

2 2(riy1/2 ~ Fi-1/2)
i 2 2 ’

3( )

Ti+1/2 ~ Ti-1/2 . .

1
2y =7 Gypyya ¥ 25-172)

From the diamond in angle assumption, it is readily shown that,

26015 = Ymt1/215 ¥ Ym-1/215 (33)
2¢rmij = q}ruﬂ-l/Zij + ¢rm—1/21j ’ (34)
. (35)

2¢zmij B q)zm+1/21j + ¢zm—1/21j

To develop the requisite equations for the unknowns, we substitute Eqs. (31)
and (32) into Eq. (30) and take the first three spatial moments of Eq. (30).
This yields the following three equations:

) + (A 3B = )+ 80)

WAy 172 Yaq1/2 T Ar-1/2 Yi-1/2 i+1/2 ~ Ai-1/2

*Blbirye T $ye1s2) OV

= VS (Agiiyo T A2 Bl 0 T 80 19) (36)
”[(r1+1/2 "B A2 T Toyy0) A1—1/2"’i—1/2]
r
£ (B = WAy = Aypyp) 8606 = £ 0)
w'
+ ctw¢r
- (37)

= WS+ B(Ay L 0 T Ay O o TR 1) 0
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ACT IR SR yr A1—1/2¢zi—1/2) (A0 T Ai—l/z)(B - W) ¢ ~12nBY)

By 0 Ty oYY,

where all but the cell edge subscripts have been suppressed. The coefficients
for X,Y, R,Z and R-§ geometry are shown in Table IV. In the above we have

three equations in 7 unknowns (the outgoing or downstream boundary fluxes, ¢r,
¢z’ and their slopes on the outgoing boundaries). The essence of this linear

discontinuous scheme is the following approximations for the unknown slopes,

h
Yemty =7 “nisyzy T %ty forw o (39)
ix1/2
TABLE IV
EXPRESSIONS FOR THE VARIOUS COEFFICIENTS IN EQUATIONS (36)-(38)
AS A FUNCTION OF GEOMETRY
Coefficient X,Y R,2 R,0
Ajv1/23 k 2Ty 720 20T 141/ 209
2 2 2 2
vy hk LIPS pPL "(Typ1y2 ~ Ti-yy2) 40
2 2
B, k T2~ T2 h
s 0 _ h _ h
1 6(rig1/2 ¥ Fi1/2) 6(Tip1sa ¥ Ty-1y2)
2 2 2 2
r +r AO.B +r
1 kB _1+41/2 ~ i-1/2 _ =2 ] i+1/2 ~ "1-1/2 _ a2
Wiy 12 v h ) Ty h z -
2 _ 2 3 _ .3
: Lo - ) Arypyy2 T Fyoyy2) Aripiya ~ Fi-y2)
1 2 Fivr72 ¥ 1oy ) B RN 2e2 2
1+1/2 ~ T1-1/2 (Tye172 = Tio1y2)
z L e +z ) 1 +z ) 1 e + 8 )
1 2 54172 T Z5-1/2 2 (Zye172 t 24-1y2 2 8954172 3-1/2
a2
. 1’
W W 88, (7 =)
Ty
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Yomiy = F 2 Wpygersa ~ gy > T om0 (40)
q)zmitl/Zj B ¢zmij ’ (41)
¢rmijtl/2 - q)rmij ' ' (42)

It has also been established that in Eq. (36), very little loss of accuracy is

obtained when 8 is set to zero. Thus, our set of equations, for p < 0 and
n < 0 is the following:

= el GAppabirrye T Bimryabio172) T Biarge T Ay B Y fup o

=] By T bgpry) TV = VS H B T A1) Y12

(43)
- '“l[(ri+1/2 =) Aoy T (2 =y y79) Ajnyyo¥io1/0]
+ [I“IV @+ fua, - Ai—l/2)h§]¢
I 1 D S N e Y I I JURPP
T2
W h
- '“' E[‘brjﬂ/z T - - ¢i—1/2)]
T Tio1/2
h
+ ctw-r—————————— W - ¢1-1/z) = Ws_
T Te1/2
T
T B0 T A28 by TR Ype1/2) (44)
= | [A1+1/2¢z1+1/2 T2y 08 ¢j—1/2)] 2B 70 T A2
x (8 + M)(¢ q,j_l/z) + 12|n| B - 6'“'[B[¢j+1/2 + 2(p - ‘bj—l/Z)]]
20906 =4y ) TSV EBBL T A1) Yoty (45)
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Equations (43-45) then give the relationship among the basic unknowns ¢, ¢j—1/2
and ¢i—1/2 for the incoming-downward directions in terms of the known ¢i+1/2’
Y541/2° Ym-1/2° Ymm-1727 *™ Yon-1/2°

The next ingredient in the method as we have implemented it is to define

the source moments S and Sz The strictly correct method is to store the

rij ij°
flux moments in a multigroup problem (with isotropic scattering) as:

g

g - 2
Srij Usog'-)g <t’rg':[j ’ (46)
g'=1

g

g =
5213 Z “sog'>g Y2g'1j (47
g'=1

where

m

¢rgij -Z Wm"’rgmij ’ (48a)

m=)

m

°zgij -E wm“'zgmij : (48b)

m=]1

This implies that the storage required is two more flux arrays per group which
for many realistic problems is a large penalty associated with the linear
discontinuous method. We have an alternative in that we are accelerating the
iterative procedure with the diffusion synthetic method. Thus, we have
avalilable the corrected diffusion flux at the mesh vertices. From this we may
compute estimates of the slopes for the source. That is, if

£ = the corrected diffusion flux,

i+1/2j+1/2

an estimate of the scalar flux slopes is given by
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A1 Y R T T U R e N e Vi e Ve S V) 2+l

el = 2%gii \T s - Ff ’
& ] i+1/23+1/2 i+1/2j-1/2 i-1/235+1/2 i-1/2j-1/2

(49)

L g 8t/ frer/2941/2 © Fmry2gy2 T fivyeg-1/e T ficuysm1y2 A+l
2k gld \fipi250172 * firr23-172 ¥ fi-725472 ¥ Ba1/25-1/2

(50)

where % is an iteration index. These are estimates of the flux moments from

which the source moments are computed but which are computed as needed.

The last ingredient is the positivity of the source. That is, we desire

the source representation to be positive and we adjust the slopes to accomplish

thise.

The source expansion may be written as,

S(r,2) = 8,3+~ Spys v T Suy (51)

The source is nonnegative if

or

Thus,

slope

where

Y

1. Ti+41/2 7 T
513 —>-'2"<2 h 'srijl * ,Szijl) for S.,4<0

NIRRT
513 Z'2'<2 R el N ’szikI) for S.4320 -

assuming Sij > 0, we can guarantee a positive source of adjusting the

so that

A

r - z =~z
S(r,z) = Sij + aij 5 Srij +"—'15__ Szij (52)
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ij
aij =minf 1l , - _: for Srij <0
) 1+1{12 |srijl + 'Szijl
a = min | 1 zsij for S >0 .
ij ’ PN ’ rij
T2
2 —5 5 8,5 * |80y

With this method coded into the TWODANT code, we have run some preliminary
test problems to assess the performance of the method. The test problem
selected here is a two-region, two—group, R,Z problem with dimensions 5 x 5
cm., The left and bottom boundaries are reflective and a uniform source is in

the left hand, bottom, 1 x 1 cm region. The two group cross sections are:

o, = 1.5 s o, = 1.0 s

sl 951+2 = 0.5 H

t2 = 1.0 , 5270 -

The calculated leakage from the system for each group is given in Table V as a
function of spatial mesh size; the coarsest mesh is 1 x 1 cm. A diamond-

differenced calculation of this problem is also displayed for comparison. We

TABLE V

A COMPARISON OF THE LINEAR DISCONTINUOUS METHOD WITH THE DIAMOND
METHOD ON A MODEL PROBLEM

Spatial mesh Leakage Error as a function of group and method
size Diamond Linear Discontinuous
group 1 group 2 group 1 group 2
1 -43.9% -32.8% -11.5% 5.50%
1/2 ~18.6% -9.5% -2.0% 1.32%
1/4 ~4.27 -2.47 -0.4% 0.26%
1/8 -0.9% -0.5% -0.067% 0.08%
1/16 0.006863 0.033698 0.006831 0.033763
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see that in this problem the performance of LD is indeed better than diamond
differencing. The convergence rate of the solution with mesh size is between
0(h2) and O(h3) and hence is not as good as expected. That is, we expect 0(h3)
in the integral parameters for LD.

The timing studies done thus far show that on the CRAY-1l, LD is about
1.5-2 times slower than diamond with fixup. What remains to be done is to test
this method on fission-eigenvalue ppoblems in order to assess the impact of the
spatial moment approximations (Eqs. (49), (50)).

C. Rapidly Converging Iterative Methods for Numerical Transport Problems
(E. W. Larsen)

We have taken a close look at two previously-proposed iterative methods
for solving numerical transport problems, the first a nonlinear method due to
Gol'din,13 the second a linear method due to Lewis and Miller.!" These methods
have certain features which we have recently observed numerically (or, in some
cases, are apparent analytically):

1) Both methods are based on equations which are derived from and

equivalent to the exact linear transport equation.

(ii) Numerical solutions generated by both methods are observed to
converge extremely rapidly, with an error reduction of
approximately two orders of magnitude for every three iterations,
for any reasonable discretization of space, angle, and energy.

(iii) These numerical solutions possess the diffusion limit.

(iv) These numerical solutions are generally not equal to the
numerically-generated standard discrete ordinates solutions
conputed on the same mesh.

In the following, we describe these methods and outline the above results in
more detail.

First we shall outline Gol'din's (or equivalently, the Variable Eddington

Factorls) method. We comnsider the transport equation

1
B () + b (rom) = <2 [ olxn')dut + Q (53)
[ 3% s i T U 2 @iX,p [ .
-1

Defining
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1
‘bn(x) = % fund’(xﬂl)dp- ,» 0= 0,1,2, (54)
-1

and taking the zero-th and first angular moments of Eq. (53), we obtain

dé

1
T tlop =9 4 =0 (55)
d¢2
-E'x— + O'T¢1 =0 . (56)

Eliminating ¢1 between these equations, we obtain

¢2(x) + (cT - cs)¢o(X) = Q(x) . (57)

+1/2
[ W1/2 _
b oax + o0 o by + Q (58)
¢x+1/2
d 1 d 2 2+1 2+l
~ o dx s % T lop o) 6y =0 . (59)
T %

We have tested this method numerically, for various discretizations con-—
strained only by the requirement that each iterative solution be positive,
8o that ¢é+1/2 > 0 in Eq. (59). For each discretization the method generates
solutions which converge very rapidly, with an error reduction of three orders
of magnitude for every two iterations, and for spatial meshes up to 103 mean
free paths across. We observed no degradation of stability for the thicker
é+1/2 and ¢é+1 converge very

rapidly, they do not converge to identical limits. In other words, for the

spatial meshes. We also observed that while ¢

numerically computed values on any mesh,
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linm %9 =05 > (60a)
L3 ,
1im ¢f) =% > (60b)
Lreo

and
0g # bg - (60c)

In addition, if &gy denotes the converged discrete ordinates solution,
then in general @0, &0, and 50 are all distinct. Of course, the extent of
this phenomenon is problem— and mesh-~dependent; as the independent-variable
mesh becomes increasingly fine, the three solutions all merge together to the
solution of the exact transport equation.

Finally, we observed that numerical solutions obtained by Gol'din's method
possess the diffusion limit. To explain this precisely, let us consider the

following rescaling of the cross sections and source in Eq. (53):

lof

» 2T
T €

o, > te (o, = op) 0<eXll (61)

Q-+ eQ .
We note that for € = 1, the original cross sections and source are obtained.

Eq. (61) imply

1, |
o GT

T
Op = Og > € (UT -0c) , (62)

s

Q»+e¢Q .
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Therefore, in the diffusion approximation to Eq. (53),

d 1 d
" & o, dax #00) * (op = gp)eG) = QG (63)

if the substitutions (61) are made, the identical equation is recovered! 1In
other words, Eq. (63) is invariant under the change of scale described by

Eq. (61). On the other hand, the transport equation is not invariant under
this change of scale. In particular, as e»o0, we have ¢

T
and Q»0, and it can be shown that in this limit, the transport solution con-

o >0 - >
» 0>, |°T csl 0,

verges to the diffusion solution. [The method in Sec. 2 of Ref. 16 gives this
result very easily.]

Based on the above observations, we now make a definition. We say that a
numerical solution of the transport equation (53), with a fixed spatial and
angular mesh, has the diffusion limit if the following condition is met: wunder
the change of scale of cross sections described by Eq. (61), the numerical
solution of Eq. (53) converges, as e+0, to the solution of a discretized ver-
gion of the diffusion equation (63). [This is a stronger definition of dif-
fusion limit than that used in Ref. 16.]

To show that the analytic equations (58) and (59) possess this limit is
easy; introducing Eq. (61) into (58) and (59) and keeping only the leading

order terms in e, we obtain

da“l/?' - d% , (64)
¢1+1/2
d 1 d 2 L2+1/2 2+l
“Ho.d iz Yo tlop-e) ey =Q . (63)
T ¥y
2+1/2

Eq. (64) implies that ¢
using Eq. (54), we have

is isotropic (independent of angle). Therefore,

1
7z 3 (66)
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and so Eq. (65) reduces to the standard diffusion equation (63). Thus,
¢§ satisfies this equation, and by Eq. (64),

ot 2 2 gt (67)

To summarize, as e€»*0, the transport and diffusion scalar fluxes agree
($O = 60), and both satisfy Eq. (63). This same reasoning can be applied to
any reasonable discretizations of Eqs. (58) and (59). 1In fact, we have tested
this concept numerically for values of & as small as 10'3, and the numerical
solutions follow precisely the same pattern as the analytic solutions; as £-+0,
the transport and diffusion scalar fluxes agree, and both satisfy (the
discretized version of Eq. (63).

The second method we wish to discuss, due to Lewis and Mi;ler, is derived

from Eq. (53) as follows. Defining

1
En(x) =%f P (0)e(x,p)dp (68)
-1

(where Pp(p) is the n—th Legendre polynomial) and taking the zero—th and
first angular moments of Eq. (53), we get

do, _

& tlopmo) e =0, (69
dé do

2 92 1 9 -

3 dx + 3 dx + GT¢1 =0 . (70)

Eliminating 51 between Eqs. (69) and (70), we obtain

z o d 2 4 =
dx ¢0 * op ~ Gs) ¢0 =Q+ dx 36T dx ¢2 ¢ (71)
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The Miller-Lewis method, based on Eqs. (53), (68), and (71), is described as

follows:

A H1/2 L

13 ax  topd o, ¥y T Q > (72)
d 1 d 2+l 1 _ d 2 d 2+1/2

- 3§'35;'5; o * (OT - o's) ¥ =t 30, dx %y * (73)

We have tested this method numerically, for various discretizations (which
now are not constrained by positivity). Overall, the behavior of this method
ig identical to that of Gol'din's method. The argument that the Lewis-Miller
method has the diffusion limit proceeds as follows: iantroducing Eq. (61) into
(72) and (73), we obtain (to leading order in &) Eq. (64) and (73). By
Eq. (64), ¢1+1/2 is isotropic, implying $§+1/2

the correct diffusion equation. Moreover, Eq. (64) implies that

= (), and hence ¢§+1 satisfies

2+1/2 L

and so the transport and diffusion scalar fluxes agree.

The Lewis—-Miller method has the computational disadvantage that in its
discretized form, one cannot guarantee a positive solution, whereas Gol'din's
method (at least 1-D geometries) can be discretized to guarantee a positive
solution. On the other hand, the Lewis-Miller method is linear and can be
Fourier-analyzed (doing this proves the method's stability and effectiveness),
whereas Gol'din's method is nonlinear, and thus perhaps somewhat less reliable.

To conclude, either of these methods (or a variant) seems attractive for
obtaining rapidly convergent numerical solutions of transport problems in
gituations where the standard diffusion-synthetic method will not work, (i.e.,
Lagrangian meshes, or a two-dimensional non-diamond differencing scheme). The
main difficulty is that neither of these schemes produces the standard discrete
ordinates solutions, and therefore numerical studies will have to be performed
to determine the accuracy of the solutions obtained. It is possible that in
some respects these solutions are more accurate than the discrete ordinates

result, but in other respects they are worse. The extent of these differences,
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as well as the ultimate use of the final method of choice, will jointly have to
be taken into account. We plan to pursue these questions, as well as the
problem of modifying Gol'din's method in two dimensions so as to guarantee a
positive solution.

D. Modified One—Group Acceleration of the Frequency-Dependent Diffusion
Equation (E. W. Larsen)

Previously17 we described a method for accelerating the convergence of a
frequency dependent (multigroup) diffusion equation by a one-group diffusion
equation. This method is defined by

1 +1/2 +1/2
T AR Py O RO (75)
¢§+1/z(x) =f 6¢R+1/2 &, 76)
0
- 8.1 2 X S+1 o gXH1/2 _ A
f sr 35 ox o V) Fo ® =% % (77
0
+1 +1/2 1
o @ = o2+ FT 0 (78)
Here we have ¢ = ¢(x,v), o = o(x,v), x = x(x,v), and
fx(x,v) dv =1 . (79)
0
For the cross sections
1 -e ™
o(v) = B (80)
v
x(v) = ae &Y , (81)
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the infinite medium spectral radius of the above method is computed by a
Fourier analysis to be 0.867, for any choice of the constants a and B

A modified (and improved) version of this method is described as follows:

_98 1 3 .a+1/3 +1/3 _ 2
ox 30 ox ¢ + ot X gt Q (82)
+ +
x 1/3 /‘ ¢x 1/3 4 ’ (83)
-2 1 3 a+2/3  2+2/3 2+1/3
ox 30 2% © ob X ¢ +Q , (84)
+ +2/3
12/3 /‘ o X2/ ’ (85)
- 2.1 3 y A+ 242/3 2+1/3 +1/3 %
fax 35 ax o 2V} Fo ("’o = ¢ (L +p) (¢ ¢o) >
0
(86)
L+ 1+1/2 tl
% =% L (87)
The infinite medium eigenvalue w of this method is given by
2 -
© =y L v (o +1-py) |,
xzf X dy (88)
0 3o
where
- 30x
Y / 2 2 (89)
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and A is the Fourier Transform parameter. (See Ref. 17 for details.) However,

for the cross sections given by Eqs. (80) and (81), the above formulas reduce

to

w=Y2‘—l‘1; (p +1-py) , (90)
z 6
where
[ ¢3 ’ et
0 =f( =] 5 4 . (91)
0 1 - e
< 3 -t, -t
() =/‘ 3; él e ) e_t <21t , (92)
0 t + 3(1 e )
z = —%— . (93)
o B

Thus, w is a function only of p and z = X/aaﬁ, and for any given p the spectral

radius is
_ sup
spr = 5% |u| .

Numerically, we observe that the choice p = 218.0 leads to the minimum

value
spr = 0.3 .

Since /0.3 = 0.55, we have that for this new method, the error reduction per
multigroup diffusion calculation is about 0.55, whereas for the earlier method
[Eqs. (75)-(78)] it is only 0.867. Thus, this modification of the method (75)-
(78) appears to be much more efficient. However, in general problems including
time dependence, the factor p must be computed, and we do not yet know how

efficiently this can be done. We plan to pursue this topic in the near future.
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E. A Modal Acceleration Method for Frequency-Dependent Diffusion Equations
(E. W. Larsen)

The frequency—dependent (multigroup) diffusion equation

- & sk 8w + olaw) 8 W)
= X(X,V) fO'(X,\)') ¢(x,v') dv' + S(X,V) , (94a)
0
with
f x(x,v) dv = 1 , (94b)
0

can be solved by the following acceleration method: 1’

2+1/2 + o 2+1/2

%;—c% ¢ ® = xd%(x) +Ss , (95a)

@

¢1+1/2(x) _fc¢x+1/2 dv (95b)
0
0
- 8.1 38 x 2+l - ttL/2 - %
./r 2x 30 dx o dx} F7 7 (x) % (x) ¢0(x) > (95¢)
0
o) = cpé“/z( y + P . (95d)
For the cross sections
x(v) = xe Y . (96a)
1 = OV
o(v) = B3 (96b)

\Y
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the spectral radius of the above method is 0.867, for all choices of the
constants « and 8. (See Ref. 17.)
Equations (95) are derived by examining the stability of the unaccelerated

method [Eqs. (95a,b,d) with F£+l set equal to zero]. The eigenfunctions are

fh(x,v) =-€?3L——§-elxx s
AT+ 36

(97)

and the most slowly converging mode corresponds to A = O:

=X
fOc

Equation (95c) is derived by requiring that if the frequency variation of the
solution ¢ can be described solely by this A = 0 eigenfunction, then ¢ should be
computed in one iteration. Here we describe a meth.d which generalizes this
idea; it requires that given a fixed number (n) of functions, or "modes” (the
first of which is x/o, but the rest of which are arbitrary), the solution should
be computed exactly in one iteration if its frequency variation at each point
can be described solely as a linear combination of these n modes.

To derive this method, we retain Eqs. (95a,b) but discard Egs. (95c,d). We
begin by introducing n-1 functions Pj(x,v), 2 {j £ n. These functions are

arbitrary but fixed. Next we define the functions Yj’ 1 <j<n, by

Yl(X,v) =1 |, (98a)
yz(x,v) = b2(x) [1 + a21(x) Pl(x,v)] . (98b)
Y3(x,v) = b3(X) (1 + a31(x) Pl(X,v) + a32(X) Pz(x,v)] R (98¢c)

etc., where bj(x) and aij(x) are uniquely determined by the couditions

®

= 1 s . 99
f x(x,v) Yp(x,v) Yq(x,v) dv 6pq s 1 <p,q<n (99)
0
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Thus, the functions (x,v) are determined explicitly in terms of, and are an
'3

orthonormalization of, the functions P&(x,v).

Now we express the solution of Eq. (95a) as

1+1/2 (x,v 2+1/2 +1/2
(x,v) = l—L—c(xv)Zvj(x,mj o + B 2,0y (100)
i=l
where
JH-l/z(x) =fc(x,v) yk(x,v) ¢X+1/2(x,v) dv (101)
0
and R£+l/2(x,v) is a "remainder" which, by Egqs. (99)-(101), satisfies

w

+1/2
J/.o(x,v) Yj(x,v) R2 / (x,v) dv =0 j=l, cee, N
0
2+1/2
We remark that if ¢ can be expressed solely as a linear combination of the
21+1/2
= Oo

n functions xyj/c, then R
We now write Eq. (95a) as

_d 1 2 x+1/2 2+1/2 2
~ 2 35 ox ¢ ¢ =xvHE +Ss .

We multiply this equation by Yy o integrate over v, and use Eqs. (99) and (101)
to get

[=-]

Tk ?x 30 ox ¢ dv + (x) = kl 1(x) + J/.Yk Sdv . (102)
0

_/‘ 2 1 3  a+1/2 x+1/2
0
Next we introduce the expansion (100) into Eq. (102):
n

- 8. 1 2 x 2+1/2 +1/2
ZfYk6x306chjdv LA O Y
3=1 \0
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@®

_ 2
= 6,4 ®l(x) +f S dv +

0

pLo w2y o oy

C""‘xe

This equation is automatically satisfied by the solution of Eq. (95a). We now

define a system of n acceleration equations for the n unknowns @i l(x),

1 <k <n, as

n ©
_ 5 1 3 x 2+l _ 2+l
E:fYkax%axond" oy -+ (L= 8y) &)

3=1 \0

- 9 1 3 patl/2

—f Yie S dv +f Yk 3% 30 3% R dv . (104)

0 0
Defining

+1 (x) = @§+l(x)

b

1+1/2( )
J

and subtracting Eq. (103) from Eq. (104), we obtain the result

n ©
3 1 3 x x+1 _ 2+1
fYk6x3craxc Yy 4V ) + (1 =8,) F " (x)
j=1 0
3 +1/2 _ R
= 6k1 i (%) @l(x) , 1<k<n . (105)

This procedure reduces to that of Eqs. (95) for the case n=l. Moreover, if

there exist functions éj(x) such that for every spatial point

n

XY
d(x,v) = :E: -—El ®j(x) . (106)
=1

then ¢ is obtained in one iteration.
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However, we have not yet specified the functions Pj in Eqs. (98), and thus
the functions yjare not fully determined. Also, we do not know in general
whether the system (105) is ill-posed (or well-posed) for determining the func-
tions Fﬁ+1, or whether special functions Pj have to be determined to make this
system well-posed. Finally, we do not know in general whether taking n large in
Eqs. (105) leads to an acceleration method with better convergence properties
than that obtained by taking n small.

Thus, in the followling, we shall consider the cases n=1 and n=2 in detail.
For the moment, we assume that Eqs. (105) can be (and are) solved to determine
F§+1(x), and we focus on the stability question for the acceleration method
(95a), (95b), (105), and (106).

Following the Fourier stability analysis outlined in Ref. 17, we obtain

the following. If we define

1
pjk. "f —k—d\) ’ (107)
0o O©
/ 302
“’o'f‘z——x‘i & (108)
0 AT+ 3¢

then Wy is the unaccelerated eigenvalue (A is the Fourier transform parameter

satisfying -~ @ < A < =), W) the eigenvalue for the n=1 acceleration method, is
defined by

3(1 - wo)
w = W, _‘_‘__2 ) (109)
LY

and Wy s the eigenvalue for the n=2 acceleration method, is defined by

3(1 - wo)
Wy = Wy = T s (110)
A (902 - K)
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where

2 2
M (p1gPo2 ~ P12)
K = 5 75 . (111)
3pyg = P1g) T A (PTG P20 0P 5 F P9y

At this point we shall assume

0=p= f xBp dv (112a)
0
/ Xpl

0 # pl2 = 5 dv . (112b)
0o O©

[By Eq. (98b), we can add a constant function (i.e., independent of v) to P1

without affecting the form of Yos and this constant can be chosen so that

Eq. (112a) is satisfied. Thus, without loss of generality, Eq. (112a) is
satisfied. However, we must simply assume that Eq. (112b) is satisfied (which
it clearly is, in general).] Thus, Eq. (111) reduces to

2 2
AP
< = >0 . (113)
3050 ¥ APy

Now we shall prove analytically that for all choices of y and o, any x#0,
and any function P (v) satisfying Eqs. (112),

0 < W, < Wy < Wy <1 . (114)
Then, defining the spectral radii
spr

n Sip |°’n| ’ (115)
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we obtain from (21)

spr, S_sprl S_spro <1 . (116)

Thus (unless equality holds) the n=2 method is stable and converges more rapidly
than the n=l method, which in turn is stable and converges more rapidly than
the n=0 (unaccelerated) method.

To begin, we note from Eqs. (94b) and (109) that

0 < @y <1 s A#O . (1173a)

This result and Eq. (109) implies

W, < W, ’ A#0 . (117b)

Next, by Eqs. (110) and (113),
wy < W, s A#EO . (117¢)

To proceed, we use the inequality18

wy > , 1 ) (118)

A
L+ 3= (pgy = %)

Using the Cauchy-Schwarz inequality,18 we obtain

2 2
® ® 1/2
P 1/2 ¢ P
2 XH] _ X 1 dv
P1p = f 7 dv) = f 5 5
o ° 0
S / 0_2 dv _/-0_—2— dv 902922 ’
0 0
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and hence, by Eq. (113),

2
P12

Kk  — < p .
Poo 02
Thus the denominator on the right side of Eq. (118) is positive, and so we can

easily rearrange this inequality to obtain

KZ
wg 3~ (p02 -kK)>1l - wg

or

3(1 -~ wo)

W >

2
A (pgy ~ ¥)
This result and Eq. (110) imply

0 < Wy oo (119)

Combining the inequalities (117) and (119), we obtain the desired string of
inequalities (114).

We have numerically computed SpT_ [Eqe (115)] for o and y given by Eqs.
(96) with @ = 8 = 1 and (for n = 2) various choices of P (v). We find

sprO = 1.0 ,

spr, = 0.867 , (N = 16)

and
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P, (v) spr, N
v 0.81 11.0
v 0.75 8.0
y1/2 0.69 6.2
W73 0.67 5.7
Y174 0.65 5.3
¥ 0.79 9.8
X 0.73 7.3
L2 0.63 5.0
25 0.59 4.4
3 0.61 4.7
£x(v) 0.53 3.6

Here N, the number of iterations required to converge the answer by one order

of magnitude, is explicitly defined by

sprN = 0,1 ’

and the function f*, defined by

*
£7(v) = 3oy

2
[03131] + 352
a B

’

arises from Eq. (97) with an optimal choice of A (which was determined numer-

ically). Thus, for all of the considered choices of Pl’ we have

spr, <spr, <spr, =1 |,

1 0

which is consistent with the theoretical result (116).
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It remains to discuss possible procedures for solving the system of Eq.
(105). For n = 1 this system reduces to a single diffusion equation, which

needs no further discussion. For n = 2, the system can be written

- L00 Fo(x) - L01 Fl(x) = Q(x) , (120a)

- L1 Fo(x) -L 1 Fl(x) + Fl(x) =0 , (120b)

0 1

where

o = o2 - el

- 3 1 2 x
Lis /Yi % 3coxo ¥y
0

and for simplicity we have deleted the iteration superscripts f2+1. Let us
define

= X_ .

then, for a homogeneous medium,
d2

L —
dx2

15 = 943 . (121)

Now let us write F0 and F1 in the form

FO = 601U0 + 911U1 V(lZZa)

Fl = - eoouo - 601U1 (122b)

where Uo(x) and Ul(x) are to be determined. Introducing Eqs. (122) into Egs.

(120) and rearranging, we obtain
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= (LgeByy = Lp181) Uy = @+ (Lg8p; ~ Lpioo? Vo > (123a)
= (L1800 = L10%1” Yo * %00 * %01Y1 = L1181 T M0%11° U - (123b)
For a homogeneous medium, Eq. (121) holds and Eqs. (123) reduce to

2 . a2

= (00, m ) S5 =, A (124a)
dx
2 . a2

= (8400,; = 85, = Uy + OoUp + 89 Up = O (124b)

This is a triangular system which can be solved without having to iterate
between the two equations, and this suggests the following iteration scheme for
Eq. (123): introduce initial choices for U, and U, on the right side of Egs.

0 1

(123) and solve for the improved values of U, and U, on the left side. Then

0 1
insert these improved values into the right side and repeat the procedure as
often as required. Only one such iteration is required if the system is

homogeneous. Moreover,

) “L 2 LI/Z - \1/2 2
e01"_/‘32 Yy dv ’f( 2) (2Y1) dv
0 o] 30

p XY
X — =
< f 2 dv f 2 dv e00911 ’
0 30 0 30

and hence the diffusion coefficients in Eqs. (124) [and (123)] have the correct
sign. [Also, Eqs. (122) can be inverted and solved for U1 and UO.]

To summarize, this model method appears to be advantageous in accelerating
the convergence of iterative solutions of the frequency-dependent diffusion Eq.
(94). However, testing will be required to determine whether the extra
calculations which need to be done will be significantly outweighed by the

savings obtained from having to perform fewer multigroup diffusion calculations.
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F. Behavior of DSA Methods for Time—Dependent Transport Problems with
Unaccelerated Diffusion Iterations (E. W. Larsen)

At each time step in the fully iwmplicit method for solving time—dependent

radiation transport problems, one must solve the equation

® 1
u—g; ¢ + (ott) $(x,v,u) —g—ff op dp' dv' =Q , (125)
0 -1
where
f X(X’V) dv =1 ’ (126)
0
.
A (127)

and Q depends on information obtained from the previous time step. The

acceleration method

u-%; ¢R+l/2 + (ott) ¢1+1/2(x,v,u) = wa(x) +Q (128a)
® 1

P20 =L f [t g (128b)
|

_9 1 3 -atl &+l 2+1 , ,
ox 3(ott) Ox £ + (otr) £ Xf of (x,v") dv
0

=X (Wl+l/2 - wl) s (128c)

[+ <]

Yl+l(x) = W£+l/2(x) +.){. cf2+1(x,v') dv' s (1284d)
0
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can be used to obtain the solution, but the diffusion Eq. (128c) must itself be
iterated to obtain a solution. Here we shall describe properties of the above
acceleration method obtained by iterating Eq. (128c) directly (i.e., without
acceleration) a finite number of time. (This number is denoted by n.,) In
particular, we wish to determine how the spectral radius of the resulting
acceleration method depends upon 1t and n.

The acceleration method is described as follows:

2+1/2
H'%% + (o+1) ¢l+1/2(x,v,u) = xwx(x) +Q , (129a)
o 1
L2 __;_/‘f s 24,04y (129b)
0 -1
p0y ag (129¢)
- %c.?(?lf-?).g—x HLml oy 2P 0y
-y PR 4 o200 _ iy 0<mg nl (129d)
. ,fof“l’“‘”(x,v) v, (129e)
0
Py = P20 4 fBgy (129¢)

The results of the stability analysis are as follows. Setting

£ iAx
e

W(l)(x) - o}

, Q=0 ,

then w is the eigenvalue, given by the following equations:
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- [o4 -1 A
o) /)\ tan g dv (130a)
0

=/ 23"<°*") Sxdv (130b)
0 A° + 3(otr)
w, =P "'{"{"‘%Y(l -y . (130c)

X = ae s (131a)

g = B —-—-3—‘-— s (131b)

we find numerically that for all values of a and B, the maximum value of w,

occurs for A = 0 provided w, is not much smaller than 0.2. Thus,

max u)n()\) = wn(O) if wn(O) > 0.2 . (132)
0< <o

For A = 0, we obtain from Eqs. (130)

= = —i
p = f g dv (133a)
0
and
n
wn(O) = p . (133b)
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For small 1, Eq. (133a) can be expanded to give

p‘f(l_%'*'lz_oco)xdv
0 (o]

-1—164‘0(12) ,

+ 0<%, (134)

1
1 + 18

where, using Eqs. (131),

e-fldv x%—l‘-g—[i . (135)
g aB
0

Combining Eqs. (127), (132)-(135), and defining r, as the largest value of
wp (the spectral radius), we get

r = 1 (136)

n n °’
1+ 6.49g
cAta B

provided the resulting value of r; is greater than 0.2. Equation (136) shows

that, as expected, r, increases to 1 as At increases to =, and that for fixed
At, r, is a decreasing function of n. However, for large At, r, is a very
slowly decreasing function.

Let us now ask a different question: for large At, what value of n is
needed to produce a given spectral radius for the full method? If this desired

spectral radius is r, = 1/4, then we must solve

n
4-1+%4-9_4' -
a” BcAt
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Hence,

0= nb . 1.386
nfl + 36.494 2.494
a” BcAt a BeAt

0.213 aBBcAt . (137)

=]
13

This is our main result, and is valid for large values of a3BcAt, say
larger than 10. It shows that for large values of At, proportionately large
values of n are required to maintain a constant value of the spectral radius.
In other words, as At increases, the number n of diffusion iterations must
increase according to Eq. (137) so that the total number of iterations of the
full method (129) [i.e., the total number of transport iterations] is held
constant.

G, New Diffusion—-Synthetic Acceleration Strategies for Frequency-Dependent

Transport Equations (E. W. Larsen)
17

In a previous quarterly report, we discussed several diffusion-synthetic

acceleration methods for the frequency-dependent (or "multigroup™) transport

equation
b2 4, vam) + 0lx,) 60,V
o 1
= y(x,v) /f o(x,v') (x,v',u') dp'dv' + Q(x,v) (138)
0 -1 '
with the constraint
fx(x,u) dv =1 . (139)

0

The procedure for accelerating the iteration of Eq. (138) by a one-group

diffusion equation 1is:
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2+1/2

p-%% + o¢1+l/2(x,v,p) = le(x) +qQ , (140a)
A2 =%ff X2 grayr (L40b)
0 O
N Y S U W DR SV, NN
J/.ax 35 2% o VY)F ) = ¢ (x) WX(X) ’ (140¢)
0
\P'Hl(x) - \I,1+1/2(x) + Fx+1(x) . (140d)

The procedure for accelerating the iterative solution of Eq. (138) by a
frequency-dependent (or multigroup) diffusion equation is:

2+1/2
“a% + o k 1/2(x V,p) = x\lf’q(x) +Q , (141a)
o 1
‘I/'H-l/z(x) -—zl-ff c¢2+l/2 du'dv' |, (141b)
0 -1
- g—;—%— Tl of’“l(x,v) - X fcf’“l dv'
0
[t 20 - w”<x>] , (141c)
W£+1(x) = W1+1/2(x) +'J(.cf£+l dv' . (1414d)

0
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For the specilal choice of cross sections

a(v) (142a)

I
w
w
-

[
R
m

x(v) v (142b)

the spectral radii of the two acceleration methods are respectively 0.888 and
0.164, for all choices of the constants a and B. [The spectral radius of the
latter method is erroneously reported as 0,082 in Ref., 17.] 1In practice, the
one-group diffusion acceleration method probably converges too slowly to be of
practical use. The multigroup diffusion acceleration method has acceptable
convergence properties, but one must generally perform a considerable amount of
iterating to get the multigroup diffusion equation (l4lec) converged. Thus, to

solve this multigroup diffusion equation, written as

- gx _3_6_(_‘12_\3. a f(av) + £(x,v) = x(x,v) fo(x v') £(x,v") dv' = S(x,v) ,

0

we proposed17 the following one=group diffusion acceleration method:

gx éo gx f2+l/2 f£+l/2( x,v) = xF (X) + 8 , (i43a)
F'Q+l/2(x) =/ cf’H-l/z dv' , (143b)
0
- f%;—%‘ w )™l = p*20 - Praoy 30
0

Py = P20 Ay (143d)
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With the cross sections given by Eq. (142), this method has the spectral radius
0.867.

Here we describe a "family"” of acceleration methods for the transport
equation that combine the methods (140), (141), and (143). Conceptually, these
methods each consist of four parts, the third of which is repeated n times,
where n is an arbitrary nonnegative integer. For n=0, the method reduces to the
one-group acceleration method described by Eq. (140). For n=», the method
becomes the multigroup acceleration method described by Eq. (141). For finite
positive n, we obtain unew acceleration methods that have convergence properties
intermediate between those of the n=0 and n=» methods, and which tend
monotonically toward the n=» properties as n increases. The methods are

described as follows.

2+1/2
w2 + oot 2,0, = ) + @, (144a)
© 1 \ A
20 _%f fc¢1+1/2 dp'dv' (144b)
0 2
f—g;é—g— av' P00 = P 20 -y | B (145)
0
Forn > 1and 0 {m<n -1,
_ %;'%E %;_fl,m+1/2 + cfl’m+1/2(x,v) \
.y PNy + Y 20 vy (146a)
Pt/ 2 =f o/ 2 g Lc (146b)
0
f & LA 1a) &l - B 2 - AR (146c)
0
J
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Fl’m+l(x) _ Fk,m+l/2(x) - Gx,m+l(x) , (1464)

Wlgy = /204y 4 ponyy D (147)

Step A describes the transport sweep, which is the first step for all
transport acceleration methods. Step B is patterned after the one-group diffu-
sion acceleration of the transport equation [Eqs. (l40)]. Step C is patterned
after the one-group diffusion acceleration of the multigroup diffusion equation
[Eqs. (l43)]. Step D is patterned after the final step in both the one-group
and the multigroup diffusion acceleration of the transport equation [Egs. (140d)
and (l4ld)].

For n=0, step C is omitted and the above method reduces to the one-group
diffusion acceleration method described by Eqs. (140), For n=», the diffusion
equation (lé46a,b) is fully converged, and the above method becomes the full
multigroup diffusion acceleration method described by Egs. (l41), For each
positive, finite value of n, we have a new acceleration method for which the
miltigroup diffusion equation is not fully converged.

The stability analysis proceeds exactly as before, and for uniform cross
sections we obtain w (the eigenvalue of the full method) versus A (the Fourier

Transform parameter) defined by the following equations:
fx
0
ry = — . (148b)
f——"
2
0

Forn>land 0 {m<n-1,

YA g , (148a)

>1q
an

302 0 A+ 30
ro S (rm + p-1) —E———L—E dv - — +try s (148c)
0 AT + 30
X 4y
2
30
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w, o=ptr . (148d)

In Eqs. (148), p is the unaccelerated eigenvalue, w, is the eigenvalue for

the one-group diffusion-acceleration method described byOEqs. (140), and for

n > 1, wy 18 the eigenvalue for the acceleration method with step C repeated

n times. For the cross sections given by Eq. (142), we have plotted p and w,
versus x/a3s for n=0,1, 2, 3, 4, 5, and » in Fig. 8. As can be seen, the
method for each choice of n is stable, and as n increases, the eigenvalues uni-
formly decrease. The spectral radii for n = 0, 1, ... , 10 are listed in Table
VI together with M, the number of full iterations of the method (144)-(147)
required to reduce the transport error by a factor of 10.

In principle, for any given problem, one can now select the value of n
which minimizes the computing cost. For small values of n the cost of doing
the multigroup diffusion iterations [step C] is low, but spr is high and so the
cost of doing the transport iterations [step A] is high. For large values of n
the spr is low and the cost of doing the transport iterations is low, but the
cost of doing the multigroup diffusion iterations is high. Thus, the total

cost will be minimized for some finite value of n (possible even n=0).

TABLE VI

THE SPECTRAL RADIUS AND M VERSUS N

n spr M
0 0.888 19.4
1 0.791 9.8
2 0.707 6.6
3 0.635 5.1
4 0.572 4.1
5 0.517 3.5
6 0.470 3.0
7 0.429 2.7
8 0.393 2.5
9 0.362 2.3
10 0.336 2.1
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Fig. 8.  versus N/a 8.

Qur analysis answers two questions which have been asked about the multi-
group diffusion acceleration method (1l41). First: what happens to stability if
the diffusion equation (l4lc) is not fully converged? 1In the context of the
undiscretized equations, the method is stable, but its overall convergence prop-
erties improve as the multigroup equation is better converged. (However, we
have not shown what happens when the one-group equations themselves have to be
iterated upon and are not fully converged. Second: is it possible, without loss
of stability or efficiency, to perform relatively few iterations on the multi-
group diffusion equation (1l41lc) in the early stages of the entire iteration pro-
cess and then more fully converge this equation in the final stages? The answer
is no. Stability will not be affected, but efficiency will almost certainly be

hurt by such a strategy, as is shown by the results in Table VI.
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H. ‘Thermal Radiation Transport (B. A. Clark)

In previous quarterly reports, we have reported our progress in solving
the thermal radiation transport equation using discrete-ordinates methods.
During this quarter we have run three sample problems to verify the accuracy of
our current methods.

The first problem is a 4 cm slab of material with opacity described by the

analytic nodel

27 ~hv/8
- e

0'(\),6) = 3 (1
(hv)

) (149)

where © = kT is the material temperature in keV. The results of this problem
have been reported previously.lg’zo’21 The Rosseland mean optical depth of the
problem varies from 5 x 109 mfp (1 eV isothermal slab) to 0.5 mfp (1 keV
isothermal slab); thus, we refer to this as a thin slab problem. The
discrete-ordinates solution of this problem is in excellent agreement with
previous transport solutions.

However, the thin slab problem does not test the accuracy of following a
radiation thermal wave through the material., For this reason, the "thick slab
problem” was run; it consists of a 20 cm slab of material described by
Eq. (149) driven by a 1 keV black body boundary source. The Rosseland mean
optical depth varies from 2.5 x 1010 mfp at 1 eV to 2.5 mfp at 1 keV. Ten

gpatial zones are utilized and S, discrete-ordinates quadrature is adequate.

The results of this problem show:d significant advantages over the multigroup
diffusion theory solution, Multigroup diffusion, without variable Eddington
factors or flux limiters, allowed radiation to propagate through the slab faster
than the speed of light. The discrete-ordinates transport solution did not
guffer from this problen.

The third test problem is a modification of the thin wall problem; in the
region 2 cm < z < 2.5 cm, the constant in the analytic opacity (Eq. (149)) is
replaced by 1000. This thick "wall" region has a Rosseland mean optical depth
that varies from 1010 mfp at 1 eV to 2.3 mfp at 1 keV, The wall is treated

using two mesh cells. Comparisons of solutions using discrete-ordinates and

Implicit Monte Carlo (IMC) are in agreement for this problem. The timing of the
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penetration of the thermal wave through the wall agreed to within 10%. Spatial
temperature distributions, chosen at various times, also agreed with IMC solu-
tions.

The discrete-ordinates method provides accurate solutions to these diffi-
cult problems using the simplest positive spatial difference scheme, diamond-
difference with set-to—zero fixup. The results indicate that this difference
scheme is adequate for one-dimensional problems. These solutions also illus-
trate the performance of the nonlinear DSA scheme developed for time-dependent
thermal radiation transport calculations.

The wall problem also brought forward some unexpected results. The number
of transport iterations required for convergence of the thermal source is
expected to be a smooth function of time step; also, the total number of trans-
port iterations per time step should remain less than 5-7. This expected
behavior was observed in the calculations before the thermal wave hit the wall.
After the wave hit the wall, the number of iterations per time step became
"noisy” and some time steps required as many as 50 iterations. This unexpected
behavior is, as yet, unexplained. Some potential causes for the noise have
been identified and are being examined. We are confident that these problems
can be explained in the near future.

Our future work will include examination of the noise in the iteration
strategy. Also, a l-group acceleration method will be employed to accelerate
the convergence of the iterative multigroup DSA calculation. Further refine-
ments in the opacity/transport iteration process will be studied to reduce the
number of opacity calculations, a first step toward adding tabular equation-of-
state and multigroup opacity capabilities.

I. A Sharper Version of the Cauchy-Schwarz Inequality for Real-Valued
Functions (E. W. Larsen)

The standard Cauchy-Schwarz inequality?2,23 for real-valued functions can

be stated as follows. Let

. b
<.>=/'(.) ax
a
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and let f and g be real-valued functions of x such that <f2> and <g2> exist.
Then <fg> exists and

0< <f2><g2> - <fg>2 s (150)

with equality holding if and only if f and g are linearly dependent.
A simple proof of (150) is as follows. We defiae the functional

F(A) = <(f - Ag)>> (151)

which is quadratic in A and attains a minimum value of zero if and only if f and
g are linearly dependent. The value of A at which F assumes {ts minimum, K*,

is determined by

0 = F'(A) == 2 <(f - Ag)g> (152)
and is
- Sigz . (153)
g >

Introducing this result into the inequality

0 < FA) (154)

and rearranging, we obtain the inequality (150). Also, equality holds in (150)
if and only if equality holds in (154), which holds if and only if f and g are
linearly dependent.

We shall now derive the following sharper version of the inequality (150):
Let f, g, and h be any real-valued functions such that <f2>, <g2>, and <h?>
exist with <h®> # 0. Then

<(£<gh> - g <fn>)%>

; < <gDah - et (155)
a?>
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with equality holding if and only if f, g, and h are linearly dependent. The
derivation of this inequality is based on a simple generalization of the
procedure (151)-(154).

To begin, one can easily show that if g and h are linearly dependent, then
(155) explicitly becomes an equality. Thus, from this peint on we assume that g

and h are linearly independent. We define the functional

F(A,p) = <(f = A\g - o) D>

which is quadratic in A and ¢ and attains a ninimum value of zero if and only
if f, g, and h are linearly dependent. The values of A and p at which F

assumes its minimum, A* and p*, are determined by

— 2(<Eg> - A¥g?> - p*<gh>)

o
{

= I (\%,p0%)

o
1]

FO,0%) = - 2<Eh> - Aigh> - o*<h?)

and are given explicitly by

(% SEEXXHT> = <Fh>Cgh> (156a)
bl
<g?>¢h?> - <gh>?
x _ <Eh><g> - <Eg><ghd
ot = SERE 22 ] (156b)
<g"><Xh"> - <gh>

(We note that A* and p* uniquely exist because g and h are assumed linearly

independent.) Now we explicitly introduce Eqs. (156) into the inequality

0 < F(A\*,p™) (157)

and after considerable algebraic manipulation, obtain
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0 < g2t = <eB><and? - <gP<end? - <nP><Eg>’ + 2 <Egd<gh><hEd

= <g2><h%> - <ghd?

The denominator in this inequality is positive, and hence the numerator must be

nonnegative. This implies

®>1ce?o¢g?> - <l > <E>iegnd? - 2 <eg><gn><ne>
2 2 2
+ <g"><Eh>" = {(f<gh> - g<£fhd>)”™ >
which immediately gives (155). Also, equality holds in (155) if and only if
equality holds in (157), which holds if and only if £, g, and h are linearly
dependent.

To illustrate the ability of (155) to produce sharper results than (150),

let us take a = 0, b = =,

2 1/2
L 30

r 1/2
g"—"‘T—z]
L1 + A" /30

XZ 1/2
h = Pl[x(l +—E>] R
30

where y(x) 18 a nonnegative function satisfying

1 = J(.x dx ,
0

o(x) is a nonnegative function satisfying

d/ﬁ Xf dx < =
0

[¢]
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Pl(x) is any function satisfying

0 = f Pl y dx , (158a)
: A
i
xP)
oy = ) dx < @ , 0<i,j<2 , (158b)
0
0+ Plg (158¢c)

and A can assume any real value. We then have

2
2y A
ED> =1 +E-py, (159a)
2 [ 32
g™> =_/.—7"—?S~—2 dx = wy(A) (159b)
360 + A
0
Kfg> =1 (159¢)
<gh> =0 , (160a)
k2
<fh> =37 Py » (160b)
2
2, _ N
<> =p,0 T F Py (160c)

Introducing Eqs. (159) into the standard Cauchy-Schwarz inequality (150) and

rearranging , we obtain
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(161)

However, introducing Egqs. (159) and (160) into the new inequality (155) and

rearranging, we obtain

wo(x) > (162)

’
5 szz
1+ A 12
3 |Po2 3 -2
P20 P22

which provides a sharper estimate than that of Eq. (161) for any function P
satisfying Eqs. (158).

1

IV. MONTE CARLO RADIATION TRANSPORT

Group X-6 has a significant effort devoted to the development, implementa-
tion, assessment, and application of Monte Carlo methods and codes for radiation
trangport calculations.,

During the reporting period, we present our progress on the MCNP, Version 3
Monte Carlo code, on portability techniques used in the code, and on implementa-
tion of MCNP, Version 3 in numerous computing environments. These reports are
followed by a discussion of a new surface source capability in MCNP. Next come
reports on the generalization of MCNP standard sources, on a new biasing tech-
nique, and on a new weight-window generator for MCNP. As part of our coupled
electron/photon transport work, we report on calculations for two electron—-gamma
converters performed with our CYLTRAN computer code. Next are two reports per-~
taining to our multigroup Monte Carlo code MCMG. These are followed by a brief
report on the application of MCNP to a total gamma ray yield detector. Progress
on 3-D graphics is also reported. The section concludes with a description of a
method of sampling from a cumulative probability distribution and a brief report
on further MCNP testing.

A. MCNP Version 3 (T. N. K. Godfrey)

MCNP is a general-purpose, continuous—energy, generalized—geometry, time-—

24

dependent, coupled neutron—-photon Monte Carlo transport code. It has been

widely accepted and is heavily used both within and outside Los Alamos National
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Laboratory. The code continues to be actively improved and enhanced by members
of Group X-6.

The portable version of MCNP, Version 3, has started a period of trial use
at Los Alamos and by volunteers among RSIC's correspondents. Version 3 has been
developed over the last two years in parallel with the sequence of Los Alamos
production versions of MCNP. Version 3 presently has all the features of the
current production version, which is Version 2D. Now that Fortran 77 compilers
and libraries are available on all widely—-used scientific computer systeums,
including ours at Los Alamos, it is time for Version 3 to go into production.
When the period of trial use is complete, Version 3 will replace Version 2D at

Los Alamos and will be distributed to other installations by RSIC.

B. Portability Techniques used in MCNP Version 3 (T. N. K. Godfrey)

The potential users of MCNP outside Los Alamos have a wide variety of com-
puters, operating systems, and utility software. We would like to be able to
provide MCNP to anyone who has access to any fairly common computing system.
Our success in making a single MCNP program (with a few isolated system
dependent sections) run on LTSS and CTSS in production at Los Alamos and at the
NMFECC, and the recent availability of a standard programming language adequate
for large~-scale scientific and engineering computing, FORTRAN 77,25 led us to
believe that we could provide and maintain a single MCNP program for use on all
common computing systems. Using this approach, we have successfully run the
FORTRAN 77 version of MCNP, Version 3, on a CRAY-1l with CTSS, on CDC machines
with LTSS or NOS and with LCM, ECS or neither, on a VAX-780 with VMS, on an IBM
3033, and on a PRIME~750. We are satified that our approach is a good one and
are presently polishing up MCNP Versicn 3 for distribution through the Radiation
Shielding Information Center (RSIC) at Oak Ridge.

The most important portability technique in MCNP Version 3 is the use of
FORTRAN 77. With FORTRAN 77 most of the difficulties with character represen-
tation, internal conversion between character data and numeric data, file open-
ing and closing, structure of binary files, and nonuniform interpretation of
control statements are avoided. The generic intrinsic functions make it easy to
use double precision type on 32-bit machines and real type on 60 or 64-bit
machines. The PARAMETER statement for defining constants of all types greatly
simplifies the creation of system—dependent sections of code where they are

required. In addition, FORTRAN 77 is a good convenient programming language,
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without the narrow limitations that made the previous standard, FORTRAN 66,26

difficult to use for large programs. The only significant limitation of FORTRAN
77 for MCNP is the absence of a way to allocate storage dynamically. Storage is
dynamically allocated in MCNP only during the setup phase of a problem. This
limited dynamic allocation. of storage can be done within FORTRAN 77, albeit
clumsily, by means of statement functions or by offsets in subscripts. The
latter method is illegal (subscript expression value exceeds upper dimension
bound) but works on all the systems we have tried.

System—dependent sections of code are necessary to provide features that
are outside the scope of the programming language. Some important examples are
overlays or segments, graphics, execute line message, field-length control, and
double precision type on 32-bit machines. The system—dependent sections are
defined by *IF,DEF,name,range or *IF,DEF,name and *ENDIF directives and are
evoked by a *DEFINE,name,...,name directive. These directives are interpeted
by a pre-processor which can be HISTORIAN or UPDATE, at least one of which is
available most places, or by PRPR in MCNP's own preprocessor. PRPR which is
only 107 lines long, is written in pure FORTRAN 77, and works everywhere.

At present we provide system-dependent features such as the time and
terminal interrupts only if it can be done by calling, from FORTRAN,
subroutines provided by the system vendor or, in some cases, by the local
installation. We may someday consider writing assembly language subroutines to
provide these features in cases where the necessary system calls exist but
there are no FORTRAN-callable subroutines that can make the system calls. We
use comdecks in MCNP to shorten the code, to make maintenance easier, and to
isolate and concentrate some of the system-dependent material. A good example
is the comdeck ZC, which is called in most of the subroutines of MCNP. It
contains thirty system-independent named constants and seven system—dependent
constants that handle peculiarities ranging from the effect of double precision
on dynamically allocated storage to the effect of automatic vectorization on
the strategy used for storing tally scores. The comdecks are defined by
*COMDEC,name directives and are called by *CALL,name directives, which are
interpreted by HISTORIAN, UPDATE or PRPR.

Another strategy used to isolate system-dependent code is to concentrate
it in a few subroutines. The subroutines GRAFIX has twelve ENTRYs providing
elementary graphics operations such as "move to a specified point"” or "skip to

the next frame."” Each ENTRY section of GRAFIX has alternative code for calling
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subroutines from CGS, PLOT10, or DISSPLA. The subroutines that call the GRAFIX
ENTRYs are free from the clutter of the alternative coding and, even more
important, are free from the nonstandard Fortran required by many of the calls
to the graphics systems. If any of the graphics systems are made standard-
conforming, only the one subroutine GRAFIX in MCNP will need to be changed.

In spite of good efforts to create and distribute a standard library of
mathematical subroutines, it is not yet practical to assume that it will be
available everywhere. Fortunately MCNP does not use very many mathematical
subroutines. Those that are used were taken from the Los Alamos mathematics
library, were converted to FORTRAN 77 and to MCNP programming style (which
shortened them a great deal), and were incorporated into MCNP as the last 600
lines of the program.

Some limitations of some systems are accommodated without providing
alternative sections of code. For example, the IBM compiler complains if
double—-precision quantities do not fall on even word boundaries. Correct code
is generated in that case, but to avoid the annoyance of all the warning
messages from the compiler and to avoid the reduced computing speed that could
result on some IBM systems, we have put all of the integer variables and arrays
in each common block at the end of the block.

The cross-section libraries that we provide with MCNP have to be as
portable as MCNP is. So we provide them as formatted files of 80-character
records. Such files are about twice as large as corresponding unformatted
files and are much slower to read. So we provide with MCNP a small conversion
code to translate the formatted files into direct access unformatted files.
This code can also be used to put the cross-section tables into files in any
arbitrary arrangement. An installation where only one kind of MCNP problem is
run can put just the tables for the nuclides they regularly use in their main
cross~section file, thus saving public file space if it is scarce. MCNP is
able to read both formatted and unformatted cross—section files. Note that
although the formatted cross-section files are both standard-conforming and
portable, the unformatted files are standard-conforming but not portable. This
is because the FORTRAN 77 standard specifies how files are to be written and
read but says nothing about how they are to exist in the actual hardware
storage medium. Each system does files its own way. The only reason the

formatted files are portable is that there are a few ways of putting 80-column
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card images on 9-track 1/2" magnetic tape such that just about any installation
can manage to read them somehow,

A Monte Carlo program has to have a generator of pseudo-random numbers.
It is highly desirable to have the generator produce the same sequence of
pseudo-random numbers on all systems. The generator in MCNP does this. It
implements the commonly—used algorithm, X' = A*X (mod M) with M=2%%*48, A and X
are each a pair of 24-~bit integers carried in real (double-precision in 32-bit
machines) variables. The multiplication is done by a programmed double-pre-
cision multiply. This gets around the lack of a low-order multiply on most
computers. The whole thing is done in five executable FORTRAN 77 statements.

C. MCNP Version 3 Implementation (J. T. West)

; MCNP Version 3 has now been implemented on CDC 7600, CRAY, VAX 780, PRIME
750, IBM 3033, Cyber 176, and Cyber 825 computer. Version 3 is written in the
new FORTRAN 77 Standard for probability. The new FORTRAN 77 compilers cur-—
rently in existence contain many minor bugs, but in general perform satis-
factorily. A serious problem exists in the IBM and CDC systems that will
require correction. IBM's FORTRAN 77 compiler has problems reading and writing
character type arrays, where the array limits are specified only in "Dimension”
statements. This problem makes 1t impossible to generate and use as MCNP
RUNTPE on IBM. CDC has a problem performing character comparisons on character
type variables stored in LCM. The problem is in a CDC system library routine
called "DCC=". A local fix exists at Los Alamos and is required on CDC machine
using LCM and the CDC FIN5 compiler. Implementation on the VAX was accom-—
plished with all features available on LTSS and CTSS, including the interrupt
capability. CRAY implementation has been successful on both CTSS and COS.

The type 1, card image cross-section format, has proved very portable.
Conversion to binary has been accomplished on all systems using the auxiliary
program MAKXSF. The concept of a cross—section directory pointing to either
disk files or peripherial storage devices has proven and will prove in the
future to be very versatile and flexible in implementing cross-section files on
different conmputer hardware.

MCNP Version 3 graphics is operational using the Los Alamos Common Graphic
System, CGS, the Tektromics PLOTI0 software, and the ISSCO DISSPLA graphics
systems. The Los Alamos CGS software has been installed and implemented on

several systems not having either PLOTIO or DISSPLA, including the Defense
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Nuclear Agency's Cyber 176 for the Naval Weapons Evaluation Facility, NWEF, CGS

is not proprietary to Los Alamos and is available to the general public.

D. MCNP, A New Surface Source Capability (J. T. West)

Frequently in running radiation transport problems it is desirable to
break up a problem into parts and concentrate effort on a part of a geometry
system rather than trying to compute the complete system. This approach is
effective when:

1. the parts of a geometry system can be decoupled, either due to distance

or size, and,

2. when albedo effects are properly treated at the coupling boundary.
This procedure is effective in studying small geometric perturbations that have
a negligible effect on the larger system. For these applications, the smaller
or secondary system is decoupled from the larger system. Changes in the smaller
system therefore do not affect radiation transport in the larger system. An
advantage to being able to conduct parametric studics on the smaller system
without rerunning the complete larger geometry system is to be able to obtain
better Monte Carlo statistics in considerably shorter computer runs, This
technique allows more design information to be obtained with less demands on
computer and manpower resources. Running coupled calculations 1s a common
practice in many radiation transport applications. The two most commonly used
coupled links are coupling SN to SN and coupling SN to Monte Carlo.

X-6 has developed a general Mounte Carlo to Monte Carlo coupling technique
for use in MCNP. The method utilized in MCNP preserves both the particle
current and the statistics of the particle distribution on a surface source.
Several methods are in common use for surface source coupling. Most techniques
in the past used either discrete distribution tables, or functions (such as
Legendre Polynomials) to preserve the phase space distribution of particles on
the surface. These approaches to surface source sampling may preserve the flux
and possibly the current on a surface, but directly wash out the statistical
information of the particles which generated the surface source.

In order to preserve exactly the statistical information of the particle
distribution on a surface source, it is necessary to correlate particle tracks
with the individual histories, which generated the track. The relative error

computed for tallies in MCNP is:
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where Xi represents the tally contribution from the ith particle history.

Actually Xi is
Mi
Xi = E Yi,j s (164)
J=1

where Yi,j is the tally contribution from the jth particle track born from the
ith history and Mi is the number of tracks for the ith history. Several pro-
cesgses exist for generating secondary particles from a parent particle. For
example, secondary particle generation or particle splitting. MCNP computes
statistics based on individual particle histories, as opposed to calculating
statigstics for a batch of particles, and then calculating errors based on
variances between batch averages. The MCNP approach allows computation of
statistics during the run, and may be terminated cleanly at the end of any
history.

Surface sources in MCNP are generated by saving all relevant particle phase
space information at a boundary on a file. A surface source file is a boundary

crossing file. It is clear that,

N i N
Z Z Yi,j =Z Xi (165a)
1=] j=1 1=1
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and that

N
:E: (Yi,j)2 4 2{: (Xi)2 (165b)

while it is true

N M, N
Zi (x; ) =Z SO LI (165¢)
i=]

i=1 j=I

The MCNP surface source, by correlating particle tracks with their respective
histories preserves both the sum of particle contributions on a surface and the
sum of squares of the history coantributions, thereby preserving the flux, the
current, and the statistical distribution of particles on a surface source,

By allowing splitting and Russian roulette on a surface source, the number
of particles tracked from a surface source may be independent from the number of
particles used to generate the surface source in the initial calculation. The
absolute variance of a surface source will be modified, if all particle tracks
on the surface are not tracked.

The new MCNP surface source has the following features:

l. The surface source may be composed of an arbitrary number of surfaces;

all or selected surfaces may be sampled.

2, All surface types are avallable for use as a surface source.

3. Biased sampling by energy is allowed. This is convenient where tally
results are being computed, which are more sensitive to a given energy
range. It is then possible to sample from a biased distribution more
efficiently then the true distribution on the surface source.

4, Surfaces may be segmented to allow partial sampling from a given area
of interest.

5. Surface sources may be repeated and arbitrarily positioned, an arbi-
trary number of times, and sampled from a biased distribution of repe-

titions.
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6. Uncollided (i.e. from the surface) point detector estimates may be made
from a surface source using discrete tables defining the angular emis-
sion probability on the surface.

Point detector estimates made from a surface sourée, presently, do unot com-
pute the correct detector variance where the angular emission distribution is
not known exactly. Much effort has gone into benchmarking and understanding
uncollided point detector estimates from a surface. A peripherial program,
FRED, computes as many as four sets of six dimensional tables for describing the
angular distribution of particles on the surface.

Two sets of tables are computed for neutrons on a surface, and two sets are
computed for gammas on a surface. One set of tables describes the angular dis-
tributions for particles on a surface source which suffered no collisions in
reaching the surface source. Another set of tables describes the angular dis-
tribution of particles which suffered a collision before reaching the surface
source.

The reason for two tables is that the angular distribution of uncollided
particles on a surface can be drastically different from the angular distribu-
tion of collided particles on a surface source. Therefore, the angular distri-
bution tables for collided and uncollided particles on a surface must be kept
gseparately.

An extreme case is a point source in a sphere, or a line source in a
cylinder. The uncollided particle angular distribution from such a hypo-
thetical source is a true delta function valid only in a monodirectional beam
emitted from the surface. If the sphere or cylinder contained a scattering
medium, the collided particle angular distribution on the surface would be
completely different, such as a cosine of the angle of emission raised to some
power,

The peripherial program, FRED, bins each set of tables in six domains of
phase space. They are time, energy, two space domains, polar angle of
emission, and azimuthial angle of emission. Tables are generated in a single
FRED run for each surface in a surface source file. At present a method has
been developed and implemented in FRED to compute relative errors for each
bin. Plans are to eventually be able to complete correctly the errors on
direct point detector estimates from a surface source. The problem may be

understood as:
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T, & 3, E, t) = = , (166)
1,3
where

Ti,j(ﬁ’ 5, E, t) - is thihtally contributign to a point detector from
the j track of the i history at space position
ﬁ, emitted in direction 5 with energy E at time t.

Pi,j(ﬁ’ 5, E, t) - 1is the probability density function for particle
emission from a surface source at location R with
direction 5, energy E, and time t.

ri,j — distance from location R to the point detector of
interest.

Yi,g - number of mean free paths from R to the point

detector.

Pi j(ﬁ, 5, E, t) is not a precisely known quantity when making direct

’

estimates to a point detector from a particle bin emitted from a surface
source. The probability of emission is computed from a statistical distribu-

tion of particles on a surface. The probability, P (R,+Q,»E, t), has a

relative error associated with it which implies tha;,iach individual tally
ri,j(ﬁ’ 5, E, t) has a relative error. The sum of the individual tallies then
becomes the sum of partial estimates, each containing relative errors. The
problem is to compute the error on the sum of the individual estimates.

The probability density function Pi,j(i’ 5, E, t) is a function of
azimuthial angle of emission, polar angle of emission, two space domains,
energy, and time. As a discretely binned density function for six domains of
phase space, there exists six hierarchial probability density functions and six
hierarchial cumulative distribution functions. Since each density table is
normalized, an iandividual bin element in each table is a fraction, where the
numerator has an error associated with it, the denominator has an error
associated with it, and a covariance error exists due to the addition of the

numerator in the denominator. To illustrate consider
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(¢a ns X, ¥, E, t)
(4, Ly X, ¥, E, t) = Qj;,j ’ (167a)
Qi,j(u, X, ¥, E, t)

P
1,]

where

Qi,j(u’ X, ¥, E, t) = ZQi,j(¢’ By Xy, ¥y 2, t) . (167b)
¢

Qi,j(¢’ 4, X, ¥, E, t) is the weight found in some bin defined about some
azimuthial angle of emission ¢, about some polar angle of emission p, about some
gpace domain x, about some space domain y, about some energy E, about some

time t.

represents Q summed over all ¢ . Both Q, . and Q' . are not
1 1,] 1,]

Q3 g

absolute quantities, but are statistical quantities. The problem is to compute

the relative error of P This may be accomplished by computing the relative

1,3°

error of Qi I the relative error of Q; i° and the covariance relative error of
’ ’

's contribution to the error in Q; This approach has been implemented

Q .
1;’%RED, so that tables of angular emi;gion probability density tables are com-
puted and their respective tables on relative errors on the angular emission
probability tables.

In the future further development of the direct point detector contribu-
tion from surface sources will include calculation of the error due to statis-
tical fluctuation on a surface source.

Surface source development has occurred in X-6 through the efforts of Ed
Snow, Art Forster, Dick Prael, and mainly Jim West. Ed Snow has successfully
blended the surface source patch in MCNP, so that its file organization and
input requirement follow standard MCNP guidelines. Art Forster contributed to
the conceptual development of the surface source and contributed to its verifi-
cation by developing simple analytic models of angular distribution on simple
surface geometries., Dick Prael contributed to the conceptual development of the
surface source method and to the understanding of error analysis involving the
surface source. Jim West contributed to the conceptual development of the sur-
face source, the initial programming of the surface source patch, the benchmark-

ing and verification of its initial operation.
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E. Generalization of MCNP Standard Sources (R. G. Schrandt)

The existing standard sources of MCNP have been modified to allow more
flexibility and some generalization. Dependency between source variables can
be defined. Up to fifty source distributions are allowed and can be associated
with any of these variables.,

In particular, particles can now start uniform in volume in more than one
cell, The probabilities are computed from the cell volumes. Multiple energy
spectra are allowed and can be selected as a function of cell.

For energy—-angle depeuding, either one can be defined to be the indepen-
dent variable. This variable is then sampled from a tabular distribution. The
index of the bin selected then points to a set of spectra for the dependent
variable. A spectra from this set is selected and the dependent variable is
then sampled from this distribution. These spectra are in the SI, SP, SB
format2" of MCNP which allows any or all of them to be biased. A frequency
table can be printed for each distribution.

This modification is in a friendly user version and is not as yet part of
the standard MCNP. An X-6 memo of November 16, 1982, describes it in more

detail and gives some examples.

F. A New Biasing Technique for MCNP (T. E. Booth)

During this reporting period, I have tested a new biasing technique based
on preferentially choosing random numbers so as to enhance those random number
sequences that have been most successful in previous histories. Before reading
further, be advised that this "biased random number technique" appears to have
failed for the moment. However, there is still hope for this technique, in my
opinion.

My personal goal for MCNP is to relieve the user of all concern about
variance reduction; the user should set up his problem and MCNP should figure
out what to do about "appropriate” variance reduction parameters. Although I
do not always obtain my goals, there is truly some reason to believe that this
one is obtainable, albeit perhaps not easily.

It is well known (for linear Monte Carlo) that zero-variance solutions of
Monte Carlo transport problems are possible if the adjoint solution is known
exactly; however, then the problem is already solved. As a practical matter,

low variance solutions are possible with an approximate adjoint. The weight
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low variance solutions are possible with an approximate adjoint. The weight
window/importance generator has had major (although not universal) success in
using an adjoint solution estimated during the previous Monte Carlo run,
Factors of two to twenty improvement over the "best"” user's run are common for
the generator. The user still must partition up the phase-space in an "appro-
priate" way because the generator estimates importance in the user-specified
phase-space cells.

The importance generator works by keeping records of the average score
generated by a particle entering a phase-space cell. The generator essentially
answers the question "what particle trajectories generate the highest scores?”
The particle trajectories are determined by the random number sequence; so,
suppose instead, one asks "what random number sequences generate the highest
scores?" Suppose that a random number sequence (; =r), Iy, T3, +..) generates
a high score, one probably wishes to sample more random number sequences in the
"neighborhood” of ?. Thus, instead of keeping records of what cells are most
important, a generator could keep records of what random number sequences are
important. This relieves the user from specifying cells.

Another way of considering the idea is to think of the Monte Carlo problem
as a function that assigns a score (or tally) T(?) to each random number
sequence T. Traditional biasing schemes work by changing T so that the random
number sequence is the argument of a new function Tl(;), and ¥ specifies an
entirely different particle trajectory. What I propose to do is to always have
T specify a given particle trajectory but alter the probability of choosing ;;
that is, 1 propose to do the biasing in the random number space rather than the
physical space. The mean can be preserved by multiplying the tally by the true
density pt(;) divided by the density p(?) actually used. Thus, the tally
associated with ¥ would be [pt(?)/p(?)]T(?).

Thus far, this approach has failed.

G. A New Weight Window Generator for MCNP (T. E. Booth)

An effective space—angle weight window generator was developed and
debugged through versions 2B, 2C, and 2D. The method and some calculational
results are described in Ref. 27. Another problem that the space-angle
generator has solved is the infamous "Tophat"” problem. This problem is shown
in Fig. 9. The material is concrete, but the density (g/cc) in regions A, B,

C, and D is 20, 10, 0.5, and 2, respectively. The horizontal lines are planes,
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Fig. 9. The "Tophat"” Problem.

and the vertical lines are cylinders so that A and B form a central cylinder
with C and D being rings. The source is 14-MeV point isotropic neutrons and is
ever so slightly just inside region A. The radii of the cylinders are 5, 10,
and 15 cm; a plane at 8 cm bounds the top of the regioms A, B, and C; a plane at
16 cm bounds the top of region B and the void above regions C and D. The object
is to calculate the total current (integrated over everything) leaking through
the segmented plane above region B.

The average mean free paths in regions 4, B, C, and D are about 0.8, 1.5,
33, and 8 cm, respectively. As part of the problem, there is absolutely no
variance reduction except for splitting and Russian roulette; even obvious
(obvious you think) source direction biasing is not used. Capture is analog,
and the energy cutoff is 1 MeV. Although not shown in the drawing, there is a
horizontal plane every ceuntimeter used for splitting.

The "best" and most reliable calculational results obtained in 1980 are
shown in Table VII. These were obtained using a CDC-7600 computer. Note the
jumps in the figure of merit; the error even at 3-4% statistics is unreliable.
Now conmpare Table VIII and note how well behaved the error is. Table VIII is
the result of the same space-angle weight window and space-angle generator

described in the Tokyo paper and calculated on a CRAY-1 computer. Although much
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TABLE VII

“BEST" TOPHAT RESULTS OF 1980
(Weight Window, energy independent)

MEAN FIGURE OF
NPS x 10~3 ERROR MERIT
10000 3.17 133 110
20000 3.59 .099 96
30000 3.91 .077 104
40000 3.92 .066 106
50000 4,08 .073 70
60000 3.96 .066 71
70000 4.09 .061 70
80000 4,07 .056 72
90000 4,09 .052 74

100000 4,10 049 76

110000 4.09 047 76

120000 4,11 045 75

130000 4,05 .043 77

140000 4,05 041 78
150000 4.05 041 73

166000 4,06 .040 72

170000 4,12 .039 72

180000 4.17 .037 72

190000 4.16 .037 69

200000 4,10 .037 69

210000 4.13 .036 66

220000 4.14 .035 67

230000 4.23 046 38

240000 4,24 044 39

250000 4,23 043 40

TABLE VIII

1983 TOPHAT RESULTS

NPS MEAN ERROR FOM
32000 5.04912E~-05 0.0441 114
64000 5.07058E-05 0,0329 102
96000 4,96510E-05 0.0267 104
128000 4,82126E~05 0.0232 104
160000 4,77104E-05 0.0206 106
192000 4 ,80046E-05 0.0187 107
224000 4,79021E-05 0.0173 107
256000 4,79770E-05 0.0162 108
288000 4 ,80059E-05 0.0152 108
320000 4,76699E~05 0.0144 108
352000 4,81356E-05 0.0138 108
384000 4,78260E-05 0.0132 108
416000 4.80842E-05 0.0126 109
425519 4,80287E-05 0.0124 109
7600 equivalent FOM = 109 | 61,

1.8



refinement is required, this technique shows great pronise for highly angle-

dependent problems.

H. Cyltran Calculations for Two Electron—Gamma Converters (H. G. Hughes and
J. M. Mack)

At the request of R. F, Hoeberling (HSP/WAC), who has an interest in
pulsed radiography, we have investigated the energy and angular distribution
of photons produced when electrons impinge on a tungsten target. The calcula-

28 5 general purpose Monte Carlo code for

tions were carried out using CYLTRAN,
the solution of coupled electron/photon transport problems in cylindrical geom-
etry. The physical situation that we wmodeled is shown in Figure 10. The inci-

dent electrons are uniformly distributed in the cosine of the angle re=lative to

Fig. 10. Model Geometry for the CYLTRAN Calculation.
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the normal, but are confined to a cone with a half-angle of 45 degrees. Two
problems were studied, namely an Incident electron energy of 1.1 MeV with a
target thickness of 0.02746 cm, and an incident electron energy of 5 MeV with a
target thickness of 0.11399 cm. The transmitted photons were tallied in 10-
degree angular bins and in energy bins with lower limits of 0.9, 0.8, and 0.5
times the incident energy. The target was essentially treated as a semi-infi-
nite slab, and no spatial information about the emerging photons 1is available.
The results for the l.1-MeV problem are summarized in Tables IX and X,
which give respectively the transmitted photon energy per steradian, and the
number of transmitted photons per steradian, in the three energy groups of
interest. (The totals given at the bottom of each table are integral quanti-
ties, and are no longer per steradian.) The corresponding quantities for the 5
MeV problem are given in Tables XI and XII. All of the numbers in these tables
are normalized to one incident electron., The customary association of a one-
sigma error with each number has been omitted here, since through a combination
of varlance reduction techniques and brute force, all of these numbers have
been driven to a precision of one percent or better. It should be emphasized
that this refers only to the precision of the Monte Carlo calculations. Compar-
ison between these calculations and actual experiments can be cruder than this,
because of uncertainties in the cross sections, differences between the model

and the experiment, and other factors.

I. MCMG Update (D. G. Collins and W. M. Taylor)
The MCMG patch to version 1B of MCNP has been updated to version 2C of

MCNP. MCMG Version 2C is a multi-energy group version of the countinuous energy
MCNP Version 2C code. The main advantages for maintaining a multigroup version
of MCNP are: 1) Solution of adjoint equation are possible with MCMG and

2) multigroup cross-sections sets prepared for Los Alamos discrete-ordinate
codes can be utilized in MCMG.

The updated version of MCMG is currently being tested through comparisons
with problems run with MCNP, ONEDANT, and TWODANT. A test problem designed to
compute the photon fluxes transmitted through and reflected from a 10 ceanti-
meter iron slab was run to produce results to compare with an MCNP calcula-
tion. The source consisted of a 5-cm-thick slab of 1 MeV, isotropic photons
adjacent to the iron slab. A 22-group photon cross—-section set obtained from
Doug 0'Dell was used in the MCMG calculation. The comparison between MCNP and
MCMG results 1is shown in Fig. 1.
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TABLE IX

TRANSMITTED PHOTON ENERGIES AS A FUNCTION OF ANGLE
(MeV/STERADIAN, NORMALIZED TO ONE INCIDENT ELECTRON)

Angular
Bin
(Degrees)

10 to 20
20 to 30
30 to 40
40 to S0
50 to 60
60 to 70
70 to 80
80 to 90

Total Energy

TRANSMITTED PHOTON NUMBERS AS A FUNCTION OF ANGLE

INCLIDENT ELECTRON ENERGY = l.1 MeV

Photons
Above
0.55 MeV
1.08e-03
1.05e-03
9.93e~-04
8.99e-04
7.86e-04
6.79e-04
5.77e-04
4,.71e-04
2.67e-04

4.00e-03

TABLE X

Photons
Above
0.88 MeV
2.17e~-04
2.09e-04
1.93e-04
1.70e-04
1.43e-04
1.16e-04
9.16e~05
7.00e-05
3.21e-05

6.98e-04

Photons
Above
0.99 Mev
7.37e-05
7.05e-05
6.40e-05
5.49e-05
4.,43e-05
3.39e-05
2.47e-05
1.73e-05
8.95e-06

2.0%9e-04

(NIMBER/STERADIAN, NORMALIZED TO ONE INCIDENT ELECTRON)
INCIDENT ELECTRON ENERGY = l.1 MeV

Angular
Bin
(Degrees)

10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90

Total Number

Photons
Above
0.55 MeV
1.50e-03
1.46e~-03
1.38e-03
1.26e-03
1.10e-03
9.57e~04
8.19e-04
6.71e-04
3.79e-04

Photons
Above
0.88 MeV
2.25e-04
2.17e-04
2.01e-04
1.77e-04
1.49e-04
1.21le-04
9.6le-05
7.35e~05
4.11e-05

7.29e-04

Photons
Above
0.99 MeV
7.14e-05
6.83e-05
6.21e-05
5.32e-05
4,.30e~-05
3.29e-05
2.40e-05
1.69e-05
8.71e~-06

2.,02e-04
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S0

(

10
20
30
40
50
60
70
80

Total Energy

(

10
20
30
40
50
60
70
80

Total Number

TABLE XI

TRANSMITTED PHOTON ENERGIES AS A FUNCTION OF ANGLE
(MeV/STERADIAN, NORMALIZED TO ONE INCIDENT ELECTRON)
INCIDENT ELECTRON ENERGY = 5.0 MeV

Angular
Bin

Degrees)
to 10
to 20
to 30
to 40
to 50
to 60
to 70
to 80
to 90

Photons Photons Photons
Above Above Above
2.5 MeV 4.0 MeV 4.5 MeV
3.19e-02 5.65e-03 1.65e-03
3.06e-02 5.41e-03 1.59e-03
2.82e~02 4,92e-03 1.45e~03
2.44e-02 4.11e-03 1.18e-03
1.89e~02 2.94e-03 7.92e-04
1.36e-02 1.84e~03 4 .30e-04
9.80e-03 1.13e~-03 2.18e-04
6.75e-03 6.54e-04 1.05e-04
2.78e~03 2.27e=-04 3.02e-05
8.68e-02 1.29e-02 3.38e-03

TABLE XII

TRANSMITTED PHOTON NUMBERS AS A FUNCTION OF ANGLE
(NUMBER/STERADIAN, NORMALIZED TO ONE INCIDENT ELECTRON)

Angular
Bin
Degrees)

to 20
to 30
to 40
to 50
to 60
to 70
to 80
to 90

INCIDENT ELECTRON ENERGY = 5.0 MeV

Photons Photons Photons
Above Above Above
2.5 MeV 4.0 MeV 4.5 MeV
9.82e-03 1.30e-03 3.53e-04
9.43e-03 1.25e-03 3.40e-04
8.71e~03 1.13e-03 3.08e-04
7.55e-03 9.48e-04 2.53e-04
5.87e-03 6.7%9e-04 1.69e~04
4.28e-03 4.27e-04 9.19e-05
3.11e~-03 2.62e-04 4 .68e~-05
2.16e-03 1.53e-04 2.25e-05
8.98e-04 5.33e~-05 6.51e-06
2.71e-02 2.99e-03 7.22e-04
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Fig. 11. MCMG-MCNP Comparison on Iron Slab Problem.

The upper plot shows the comparisons of total photon fluence at the entry
surface, mid-way and exit surface of the iron slab. The two lower plots show
the energy dependences of the fluences at the entry and exit surfaces of the

iron slab. Since all source photons were 1-MeV photons, the 0.75 to 1.0 MeV

91



energy group shown in the center plot contains the uncollided fluence entering
the slab while the lower energy gfoups contain only those fluences reflected
back out of the iron slab.

Discussion of additional test problems being run with the MCMG program are
included within the classified portion of the progress report.

Thus far, all test problewms run with MCMG have utilized equiprobable step
cosine bing for defining the scattering angle distribution. Both neutroa and
ganma—-ray problems have been run, but no coupled problems have been run thus

far.

J. MCMG Otilization and Adjoint Calculations (D. G. Collins)
Bill Taylor has updated the MCMG (Multigroup Monte Carlo) patch to version

2D of MCNP, At the same time the patch was reduced in size by removing much of
the cross-section processing routines from the patch and incorporating those
routines into a separate program named CRSRD.

As Mr. Taylor has been updating MCMG, I have been using the new version of
the program to insure this versioan tracks problems that I had run with earller
versions of the code. 1 also have conducted an extensive review of the MCMG
code in an effort to understand the methods employed to bias the sampling of
the upscattered energy groups in adjoint calculations and to determine the cell
and energy dependent importances.

MCMG curreatly allows the user to make a forward calculation to generate
cell and energy dependent importances for an adjoint calculation, but does not
provide for using adjoint fluxes to develop importances for a forward calcula-
tion. We plan to add this capability to MCMG.

Comparison between MCMG and ONEDANT and TWODANT are being contfnued.

Since the same set of multigroup cross sections may be used in all three codes,
these comparisons reveal the differences that one may expect between Monte
Carlo and discrete ordinance calculations and help to determine which of the

two methods 1is the more suitable for a particular type problem.

K. Total Gamma-Ray Yield Detector (D. G. Collins)

Several MCNP calculations have been made to aid in the design of a total
gamma-ray yield detector. The design criteria has been to determine the opti-
mum shape of a water filled chamber which will absorb a high percentage of

92



the energy within a collimated beam of gamma rays incident to the chamber. An
additional criteria is to make the chamber as small as possible. Calculations
of the gamma-ray energy leaking from spherical chambers and cylindrical chambers
with hemispherical domes on either end have been made for collimated sources
incident to the chambers. Monoenergetic gamma-ray sources of .5, 1., 2., 5.,
and 10 MeV and a fission gamma-ray source have been considered in the calcula-

tions.

L. 3D Graphics (CONPAR) (J. C. Ferguson)

M.OVIE29 is a utility which can produce quality 3D computer graphic dis-
plays, in either line drawing or shaded surface modes. It is available world-
wide (a product of Brigham Young University), inexpensive (= $300), and effi-
ciently maintained and improved by B.Y.U. It thus provides us with a product
which is not only very useful, but codes based on it are transportable.

In order to significantly extend the applicahility of the MOVIE progranm,
CONPAR serves the purpose of transforming a set of constrained mathematical sur-
faces into the necessary polygonal geometry required by MOVIE. Surface segments
are internally represented by parametric equations while constraint surfaces are
defined implicitly. If a surface is to be used both for plotting as well as for

a constraint, then it must have a dual representation.30

Applications to the MCNP program are quickly recognized since quadric and
torii surfaces have dual representations. CONPAR is still in development. How-
ever, it has already been used on several MCNP geometry plotting tasks (see
Figs. 12, 13, 14).

M. Sampling from a Cumulative Probability Distribution (R. G. Schrandt)

In Reference 31 a method of sampling from a cumulative probability distri-
bution (cpd) is given. The algorithm was applied to the sampling of long
energy—-angle scattering functions in Reference 32.

The usual scheme of sampling a cpd of length £ uses a binary search. This
can take some time if £ is large. This new method pre-calculates 2-1 condi-
tional cdf Qj,j = ] -—— %, together with a pair of minimum and maximum indices

and 1 These indices can take on all values from 1 to 2. A random

1 .
1,3 2,3
number £ is chosen, and j = 1 + § (2-1). The sampled index of the distribution

is either Il,j if £ > Qj or IZ,j if £ S_Qj.
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Fig. 12. Sample MCNP Geometry Plot using CONPAR.

The method is obviously directed toward vectorized sampling. It was
decided to try the method in a scalar mode with the new standard sources of
MCNP.

In one typical problem there were 10 source distributions of different
lengths from 14 to 152. The longest distribution was only sampled 5% of the
time, but there was one of length 101 that was sampled 367Z of the time. There
were about 1.3 collisions per particle started. 1t ran about 2.4% faster with
this method compared to the binary search. A second but more artificial
problem was run sampling a single source distribution of length 1000 in a void

geometry. This ran about 7% faster with this scheme.
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Sample MCNP Geometry Plot using CONPAR

Fig. 13.
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One disadvantage to this method is the amount of storage required. For a

distribution of length %, 3(f-1) words are needed, although the indices could
possibly be doubly stored,

A typical source distribution in MCNP would probably be of length less than
100, The savings in time in the scalar mode would be marginal, especially since
very little time is typically spent anyway in MCNP in tne source subroutine. A
more practical application for this or some other such scheme might be in the

total cross—-section selection.

N. MCNP Tegting (J. F. Briesmeister)

Version 2D of MCNP was tested and various new features were tried. Later
Version 3 was tested against 2D using a wide variety of real problem input
files. Certain sections of the manual were rewritten for clarity or to incor-
porate changes. A flow diagram of MCNP Version 2D and Version 3 was begun. A
memo was written to W. L. Thompson detailing the setup and calculation of a
berylliua problem he had requested, Experiments were performed by Basu e: al,33
to measure the neutron multiplication in beryllium produced by l14-MeV neutrons
to check basic nuclear data. Using Version 2D of MCNP, our results (1.90)
matched quite closely the calculated results (2.03) presented in the technical
note, but did not agree with the experimental results (1.58) presented in the

note for the 12-cm thickness case.

V. CROSS SECTIONS AND PHYSICS

A portion of our effort in Group X-6 is devoted to the acquisition, vali-
dating, and creating libraries of cross section for use in our deterministic and
probabilistic codes. We also devote effort to supporting research and evalua-
tion of physics models for radiation transport problems of interest.

In this report we present a discussion of Compton scattering of photons
from electrons in thermal (Maxwellian) motion. We also report on the mean
energy of Compton scattered photon from electron in thermal (Maxwellian) motion
and the resultant electron heating.

A. Compton Scattering of Photons from Electrons in Thermal (Maxwellian)
Motion (J. J. Devaney)

We have critically reviewed the exact Compton differential scattering of a

photon from electrons distributed according to a relativistic Maxwell velocity

24

distribution for possible use in transport codes. Our study 1is based on the
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form derived by Wienke using field theoretic methods.3*=*0 If K' is the initial
electron energy, m the electron rest mass energy, I, the classical electrom
radius, T the temperature in energy units, v' the initial photon energy, v the
final photon energy, 6 the photon scattering angle, a' the angle between initial
photon and electron momenta, & the angle between final photon and initial elec—
tron momenta, and ¢ the angle between the sides 6 and «' in the spherical tri-

angle 9,a',a, then the law of cosines gives
cos a = cos a' cos 6 + sin a' sin 6 cos ¢ (168)
and we use the exact scattering expressions in the forms:

k = (1 + (K'/m)) (169)

K - /Kz-l cos a' (170)

Ky =
Ky =K = /Kz—l cos a (171)
p = cos 8 (172)
_ _ v'k VK
K = (1-p) 2(1-y) + 1 + '2 (173)
2 2 K, K VK vk
K, K 172 2 1
172
with relativistic Maxwellian (normalized)
- - ]
£ = [4mlTr,y(m/m)]F DT (174)

where K, is the modified Bessel function of the second kind and order. Our

differential photon scattering cross section into solid angle dQ is then:

do ri 2 1 v 2
40 . 2 ', ' . /X! ', 'y . . (Yo
do 0 /‘dK (K' + m) K +2mK £f(K') o (v')
x K o dcosa' « d¢ (175)
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The Compton energy relation becones:

k.mv' = yv'(l-u) + «

1 SV . (176)

These last two relations reduce in the limit T+o to the standard Klein-Nishina

formula and the Compton energy relations, respect:ively:l’1

2

r 2
do o] v v'! \ 2
@~z G7) [Srgr et -l (177)
mv' = yww'(l-y) +ve . (178)

We have verified the derivation of the above exact formulas,¥2,%3 Eqs. (168)-
(176) and have checked them numerically over the ranges I<T<100 keV,
1<{v*'<1000 keV, and 0<6<180°.

In addition we have critically reviewed the Wienke-Lathrop Isotropic
Approximatfbn““ and its development. We verified its plausibility derivation
and numerically checked its accuracy against the exact theory. Although for
worst combination of parameters In our range of interest, to wit v' = 1 keV,
T = 100 keV, and 6 = 180°, the error can be as high as -28%, we find the
approximation to be simple, only one integration, and reasonably accurate

(x5-8% mid-range). The form of the approximation used by us was

T
2 2 VK
g_g" rf : sine fd4> (L) [(1_“) S Al vy 2] . (179)

]
< v (KK2)2 KK, VK v'e

2
o

Actually the ¢-integration has been performed by us, but the result is compli-
cated and is the small difference of large quantities so that numerical inte-

gration of Eq. (179) is both simpler and for smaller computers, more accurate.
In Bq. (179), « is now:

2 3 4
3T T T T T
K=/l 4= [1 + 20(5;) + 120(8—i) - 960(8—m) + 4320(8—m) + ] (180)
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and k, is:

Ky = K = /42—1 e (sin 8 cos ¢) (181)

with Compton energy relation:

k mv' = vw'(l-p) +k,mv . (182)

2

Eqs. (179) and (182) also reduce in the limit T+0 to the Klein-Nishina and
Compton energy equations, Eqs. (177) and (178), respectively.

We studied also the Wienke-Lathrop one—parameter Fitted Approximation, but
found it of only slightly less complication than the Isotropic Approximation
and considerably less accurate. However, its merit is the substitution of a
table or a graph for an integration, and that may be of value to some., More-
over, additional parameters may be used in the approximation to improve accu-
racy.

5

By numerical verification we determined that the Cooper—Cummings“ total

cross-section approximation is simple and accurate (error £1%). It is given as

a ratio of the T#0 to T=0 Compton total cross sections, cczus

| = ' = ° -— V'T
5. (v D = o (v',T=0) [1 57703 + 637.69v" ] . (183)
The Compton total cross sections for T=0 may be found in Heitler."! They are,
for y = v'/m:
For y small, it is best to use:
2
8nr
o 26 2

because smaller computers may fail to compute logarithms accurately in the

exact expression:
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. (T=Q) = 2‘!\',1‘3 {M[—?‘M—)— - n( 1+ZY)] + 1 2n (142y)

2
3 1 + ZYY Y
- Sliélli} R (185)
(1+2y)
2/3

The Thomson scattering cross section is of course 81tro . Other total cross-
section approximations investigated turned out to be considerably less
accurate.

we recommend the ordinary Klein-Nishina Formula for most problems up to an
electron temperature of 10 keV. The formula is already in the Monte Carlo Code
MCNP and other Los Alamos codes. One may then expect accuracies of better than
1.5% in the total Compton cross section (maximum v' = 1000 keV) and about 5% or
better in the differential cross section. For higher accuracies or for special
results, such as for example photon energy upscatter, one should use the full
temperature dependent theories. Even as high as T = 25 keV, the error of the
total Compton (Klein-Nishina) cross section is 3.6% or less (maximum v' = 1000

keV) and of the differential cross section is of the order of or less than 10%.

(Specifically at T = 25 keV, v' = 25 keV the errors are +5.87% at 6 = 45°, +8%
at 90°, and -0.9% at 135°). At 1 keV temperature the error of the total Klein-
Nishina cross section is 0.15% (v' = 1000 keV) or less, and the errors of the
Klein-Nishina differential cross section is 0.5% or less.

For higher temperatures (than say 10 keV or so), greater accuracies, or
better specific detail, we recommend use of the exact equations as summarized
above. This recommendation is only made with the proviso that an efficient
computational algorithm can be found. Otherwise, we recommend the Wienke-
Lathrop Isotropic Approximation summarized above with numerical integration
over ¢. Such approximation should be limited to 0 < T £ 100 keV and
1 < v' < 1000 kev.

B. Mean Energy of Compton Scattered Photons from Electroms in Thermal
(Maxwellian) Motion. Heating (J. J. Devaney)

In addition to the differential cross section for the Compton Scattering
of photons from electrons in thermal motion (relativistic Maxwellian), one is
of course interested in the energy of the scattered photon and the consequent
energy deposition or heating of the electrons. We give the mean scattered
photon energy and the mean heating of the electron gas by the photon scatter-
ing. Both quantities are given as a function of the photon scattering angle,
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0, the electron temperature, T, and the incident photon energy, v'. We compare
these means, <{v> and <H>, as calculated exactly, as calculated with the Wienke-
Lathrop Isotropic and One-parameter Fitted Approximations, as well as with the
unmodified, regular, T = 0, Compton Energy Equation results.

For the exact equation, averaging over the relativistic Maxwellian para-

meters, ¢, a', and K' we obtain the mean heatings, <H>:

<H>

d,X,Kk Y

3, 7 _
D> =2 deK . /Kz—l e (mg /T)
1

/2
< [(1—u) -l (ek)(1mp) | e S AL (1g6)
2 Kz—l c+x - /Kz—l
where the notation comes from the preceding article.
_ 2

vy =m" T K2 (m/T) (187)
k =1+ (K'/m) (1888)
c = (v'/m)(1l-p) . (188b)
The mean scattered photon energy is:
<v> = v' =< ., (189)

uy

For the Wienke-Lathrop Isotropic Approximation ' we obtain the heating:

KHp> = v' L - X , (190)

M) - (2=1)(1-nD)

where « is given by Eq. (180). The mean scattered photon energy is:

<vI> = y' - <HI> .

101



We do not reproduce here the Fitted Approximation formulas which we do not
recomnmend.

The regular Compton (T = O) scattered photon energy is of course:

v = v'/(ctl) (191)

and heating

H=v'-v . (192)

By the above formulas we calculated the mean energy of a photon scattered
from a Maxwell distributed electron gas by four methods: &Exactly; by the
Wienke~Lathrop Isotropic and One—-parameter Fitted Approximations; and by the
standard (temperature T = 0) Compton Energy Equation. To about 4% error the
simple Compton (T = 0) Equation is adequate up to 10 keV temperature. Above
that temperature the Exact calculation is preferred if it can be efficiently
coded for practical use. The Isotropic Approximation is a suitable compromise
between simplicity and accuracy, but at the extreme end of the parameter range,
we have considered (T = 100 keV incident photon energy v' = 1 keV, scattering
angle 8 = 180°), the error is as high as -28%. For mid-range values like 10 to
25 keV, the errors are a percent or so up to 8%. The Fitted Approximation 1s
generally found to have large errors and is consequently not recommended.

The energy deposited in the electron gas by the Compton scattering of the
photon, i.e., the heating, is only adequately given for all parameters in the
ranges 1 < T < 100 keV and 1 < v' < 1000 keV by the exact expression. For low
depositions the heating is the difference between two large quantities, one
approximate, and so can lead to order of magnitudes errors. However, for
scattered photon energy v >> T the Isotropic Approximation does well, (0.13%
error for v' = 1000 keV, 6 = 180°, T = 10 keV, v = 790.7 keV, and 2.7% error for
v' = 1000 kev, 6 = 90°, v = 583.5 keV, T = 100 keV). The regular T = 0 Compton
also does well for T < 10 keV and v >> T, (0.7% for v' = 1000 keV, B 180°,

T = 10 keV, v = 790.7 keV, and 0.08% for v' = 1000 keV, 6 = 180°, T = 1 keV,
v = 795.9 keV). The Fitted Approximation is without merit for heating.
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